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1.0 HISTORICAL INTRODUCTION

Efforts to produce high power, high quality electron beams for use in Navy applications
have focused in recent years on techniques to improve the current carrying capacity of the
betatron accelerator, first operated by D. Kerst" 2 in 1940. It was recognized early by
Kerst 3 that the current limit in a betatron is due to the defocusing effects of space charge
at injection time; space charge effects become rapidly less important as beam energy is
increased. One obvious way, therefore, to increase the current is to increase the energy of
the injected beam. Of course, there are limits to this strategy; the injector rapidly becomes
large and expensive as the energy is increased. Still, this technique has been successfully
used to produce high current (- 100 A) beams in a betatron. 4 5 By contrast, the largest
Kerst betatron6 achieved currents of about 100 mA using a 100 keV injector.

Besides increasing the energy of injection, other methods have been tried to improve
0 the current limit, including increasing the external focusing strength in various ways and

by decreasing the defocusing effect of space charge by the introduction of a background
plasma. Devices using this latter approach, called plasma betatrons, 7 never worked very
well, even with the addition of an applied toroidal field.'

* Early attempts to increase the focusing strength of applied magnetic fields had mixed
results. Among the earliest were the fixed field, alternating gradient (FFAG) betatron, 9

based upon the (then) newly discovered strong focusing principle'0 and the betatron with

added longitudinal field."

Two variations of the FFAG betatron were designed, a radial sector type and a spiral
sector type;3 both use fields that are fixed in time, allowing particle orbits to move radially
as energy is increased. The current in these devices is thought to be limited, as in other
strong focusing machines, by the tune shift due to space charge. The magnet design in
these devices is significantly more complex than for a conventional, weak focusing design. 3

The addition of a toroidal field to a betatron appears to have been first tried in
England shortly after World War II, at the wartime radar establishment rt Malvern." It
was found that such an additional field decreased the current outpi, of he device, the
reason being that the electrons tended to intercept the injector after (,. or a few turns
around the machine. This early experiment was soon abandoned but the basic idea, that a
longitudinal field could be used to control space charge defocusing, was nonetheless sound;
the fundamental problem was to inject and trap a high current beam in the presence of a

longitudinal field.
0 In 1972 Rostoker' 2 described theoretically how to form a high density beam of elec-

trons in a torus, using the inductive charging technique pioneered on the HIPAC device. 13



A few years later he proposed14 accelerating the resulting high density beam using a flux

changing coil, as in a conventional betatron. A similar 'modified betatron' for high current

proton beams (not using inductive charging) was proposed by Sprangle and Kapetanakos. 15

On the basis of this theoretical work and some additional studies 16' 17 two experimental

programs on the modified betatron were begun, one at the University of California at

Irvine and another at the Naval Research Laboratory.

The program at Irvine was an outgrowth of some earlier work on electron cloud trap-

ping at Maxwell Laboratories. 8 It was found that a large fraction of the cloud injected

by inductive charging could not be accelerated by the betatron field; the suggestion was

that electrons were trapped in field bumps produced by the discrete coils used to make

the toroidal field. By using a variant of inductive charging the Irvine group was able to

produce currents up to 200 A and energies up to 1 MeV (but not both, simultaneously) in

a modified betatron. 1 9

At NRL, extensive analyses were made of injection,20 '2 1' 22 beam equilibria 23 and

stability, 24,25,26 and extraction27 during the design and construction of a larger scale modi-

fied betatron, designed to produce a 50 MeV, 10 kA electron beam. The technical obstacles

to injection and trapping and to chamber design have proven to be difficult to overcome,

however. Recently, the successful injection of ,t 2-3 kA beam has been achieved using an

* internal diode injector arrangement. 2 2

One of the problems with both the conventional and modified betatrons is their sensi-

tivity of the radial location of the equilibrium orbit to the particle energy, a feature which

complicates the injection and trapping of large currents. It was first recognized by Mon-

* delli and Roberson, 21 in the course of their study of the Racetrack Induction Accelerator,

that the use of an f=2 stellarator field will significantly reduce this sensitivity. It was

subsequently suggested 29 that the addition of an e=2 stellarator field to a modified beta-

tron could improve its current carrying capacity. In a test of this prediction, stellarator

* windings were added to the betatron at Irvine. A 200 A beam was accelerated to 2 MeV

in the device; 30 smaller currents were subsequently accelerated to 10 MeV.

The present report presents theoretical result5 produced with ONR support at SAIC,

on the stability and scaling of compact electron accelerators using continuous strong focus-

* ing in the form of stellarator windings. The work reported here has been mainly analytical

in nature but has also involved the developma$and use of a variety of computer programs

needed to assist various aspects of the study. (See Appendix C.) During the contract we

have'attempted to address in some considerable detail every major physics issue which

would affect the design of accelerators using stellarator fields. Generally speaking, 'these

issues divide into two broa, categories: beam equilibria and matching and beam stability;
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each of these may be further sub-divided into single particle and collective phenomena.

0 Beam equilibria are states in which focusing and defocusing forces are in balance.
Collections of non-interacting single particles, launched with a distribution of initial con-
ditions, are defocused by the finite beam emittance and focused by external fields. For
strong focusing systems there typically exist regions of parameter space in which particle

* orbits are stable, separated by so-called stopbands, in which the motion is unstable. For
non-interacting particles, every collection of initial conditions in a stable system represents
an equilibrium. It is possible to construct special equilibria, so-called matched solutions,
whose macroscopic properties (e.g. beam shape) repeat periodically with the same pe-
riod as the focusing system; these have been constructed generally for 1-D systems by
Courant and Snyder.3 1 In the case of realistic transport systems in which the focusing
system changes qualitatively from section to section, numerical analysis is necessary in
order to analyze the change in beam properties. A single particle code, SPIRAL, has been
constructed for this purpose. This code and its use in performing beam matching calcu-
lations from a diode, through a focusing (compression) section and into i = 2 stellarator
transport section are described below.

Once space charge forces are considered, the situation becomes more complex; only
in the simple case of a uniform elliptical beam can equilibria be constructed analytically.
In the case that the two transverse degrees of freedom are decoupled this was shown by
Kapchinskii and Vladimirskii;32 the resulting K-V equilibria are represented by the usual
K-V envelope equations. The stability of these envelopes in a bumpy-torus (f=0) stellatron,

33 ,has been studied under this program. ;Y
0 When the transverse degrees of freedom of particle motion are coupled, as in the f=2

stellatron, the analysis of beam equilibria and stability becomes more complex.
Gluckstern 34 appears to have been the first to construct a K-V type of equilibrium for
a continuously rotated quadrupole field; Chernin 35 carrid out the analysis including a

* longitudinal field. There remained, however, the question of how small departures from
these equilibria behaved. To answer this question, an envelope type of equation govern-
ing these systems was required. Such an equation was developed and the stability of the
K-V e=2 stellatron distribution was studied under this program.36 A code, XYENV, was
written to integrate the generalized envelope equation in an arbitrary focusing system,
including the effect of space charge for a uniform elliptical beam. It has been used to
study the matching problem from longitudinal to stellarator fields in the presence of space
charge forces and will continue to be used as a design tool for transport line design.

Beam stability issues, like the issue of envelope stability, naturally divide themselves
into single particle and collective effects. The most basic stability question for the stella-
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tron, that of the nature of the stopband for single particle motion, was answered in the

original paper of Roberson, Mondelli and Chernin.2 9 Other single particle instabilities are

inevitably present in real machines, however, in the form of orbital resonances due to the

presence of field errors. Both linear and non-linear resonances have been investigated in

some detail;37'3 our conclusion is that they are potentially rather serious for the stellatron
and may act to limit the achievable current and energy of the device. Some evidence of

the ability to cross high order resonances has been reported by the Irvine group. 39 One
interesting theoretical finding is the tendency of a strong longitudinal field to reduce the

tune shift due to space charge.

Collective beam modes have also been investigated during this effort. In particular,
an extensive study was reported 40 on the negative mass instability in the stellatron, and its

coupling to transverse modes. An eigenvalue problem for the growth rate was formulated

and solved numerically; in addition, the eigenvalue problem was solved approximately, in
the smooth approximation, and the resulting dispersion relation reproduced the numerical

* results to very good accuracy. It was shown that the correct dispersion relation was just
that for the modified betatron, 26 under the replacement of a single term, to include the

smoothed effect of the stellator field.

Another collective mode of a beam in a stellarator field was identified by Hughes

and Godfrey.41 This is a short wavelength, transverse electromagnetic mode involving a

resonance between the betatron oscillations of the beam and a vacuum waveguide mode.

Linear growth rates can be significant under some circumstances and computer simulations
have shown 4 1 that this instability can be disruptive. There is some evidence that self

* beam energy spread due to space charge will help stabilize this mode. Avoidance of this
instability requires careful design of the beam transport line.

During the course of this work, it became clear that recirculating induction linacs

hold promise for solving some of the problems facing a betatron, even one using strong
* focusing: for the stellatron, as for the modified betatron, injection and extraction remain

key problems. Also, the relatively slow acceleration cycle of a betatron allow time for the

growth of beam instabilities. Finally, the weight of a high power betatron and associated
power supplies and shielding looked formidable.

* Based on the early theoretical work of Mondelli and Roberson 28 on a racetrack re-

circulator using stellarator fields, on the experimental efforts on recirculation of Wilson,42

and on the work of Birx43 on branched magnetics, a spiral line inductor accelerator (SLIA)
was proposed44 in 1985. The SLIA uses a continuous beam line which passes through an

accelerator module multiple times. This design vastly reduces the difficulty of injection and
extraction and, since the effective accelerating gradient is much larger than in a betatron,

4



instabilities have much less time to grow; one finds, for example, that the long wavelength

negative mass instability in the bends is not nearly as important as in a betatron. Also in
0 the SLIA, the weight of the power supplies is r:educed by resetting and re-using the induc-

tion module cores between beam passes. Finally, the use of static fields in the transport

line allow very low field errors to be achieved.

While solving many problems of the closed orbit, betatron-type accelerators the SLIA
0 introduces at least one important new physics/design issue: the beam break-up instability.

This instability is due to the off-axis passage of a beam through an accelerating module
which excites an electromagnetic cavity mode which, in turn, further deflects the beam.

It has proven to be the single most important current limiting instability in the ATA
0 accelerator.45 Techniques for its control, including careful cavity design and strong focusing

are under investigation. SAIC has developed a numerical code, BBUSH, which tracks a
beam through an arbitrary configuration of gaps and transport lines. It was used in our

analysis of the effect of sextupole windings on stabilization of the bbu. 46

0 The Spiral Line Induction Accelerator was favorably reviewed by the JASON commit-
tee in June 1986 and was very highly rated for Navy and other applications in the extensive,

DARPA/Services sponsored review, the Net Technical Assessment of the Tactical Appli-
cations of Relativistic Charged Particle Beam Weapons, conducted during 1986-87.

0 The remainder of this report provides technical details on the work performed at
SAIC under ONR support. Three main sections, on beam equilibria and matching, on
beam stability and on the Spiral Line Induction Accelerator follow. Each section includes
a discussion of work performed and summarizes our results. Some details are given in

Appendices: Appendix A includes reprints of published papers, Appendix B is a list of

conference presentations and Appendix C is a list of brief description of computer codes
written in the course of this work. A final section gives our conclusions and recommenda-

tions.

0
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2.0 TECHNICAL ACCOMPLISHMENTS

* This section describes the technical work done with ONR support on the physics
and design issues affecting high current electron accelerators using stellarator focusing.
Two broad areas are discussed: beam equilibria and matching (Section 2.1), and beam
stability (Section 2.2). A third section (2.3) describes how our studies of these issues led
to the proposal of the Spiral Line Induction Accelerator, now presently under assessment

for Naval tactical requirements. Each section and subsection contains a summary of our

approach to a problem and our main results and conclusions. Some details are provided

in Appendices.

* 2.1 Beam Equilibria and Matching

In a periodic, strong focusing transport system a matched beam is defined as one
whose macroscopic properties (beam radii and orientation) repeat with the period of the
focusing system; matched beams are typically defined to be monoenergetic. While never

* precisely realized in practice, the nature of a matched solution for a particular focusing

system is important to know so that the dependence of the beam size on its current, energy

emittance and on the applied focusing strength can be estimated. One would also like to
know the form of the matched solution so that a beam may be prepared, as much as is
practical, in a matched state before launching into the transport system.

2.1.1 Self-Consistent Treatment of Space Charge

For a continuously twisted quadrupole, with no added longitudinal field, Gluckstern 34

has described K-V type equilibria; the form of these equilibria when a longitudinal field is
* present has been worked out by Chernin. 35 The approach is to identify constants of motion

for the single particle equations of motion, assuming a uniformly populated, elliptical

beam and then to find a function of these constants-a solution of Vlasov's equation-which

reproduces the uniform beam. The correct function of constants of motion turns out to be
a delta function of a particular argument, in close analogy to the distribution function used
by Kapchinsky and Vladimirsky 32 in their now classic work. Once the distribution function

is found, it is straightforward to calculate beam radii as functions of system parameters,

assuming certain emittances, or phase-space areas, are known. For non-zero current the
functions are implicit, due to the dependence of the single particle betatron frequencies
on the current; a numerical technique to solve for the equilibrium beam radii as functions

of various system parameters was developed. Details of the calculation with numerical

examples, are given in the paper of reference (36), included in Appendix A.

In order to study the behavior of beams away from equilibrium, it is necessary to have
a formalism which describes a beam in coupled focusing systems, like the stellarator. It

is possible to formulate a general envelope equation for a coupled system, including space
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charge for a uniform beai )y using the notion of rms quantities. This was carried out
during the present program and is described in the following section. A full accounting is
given in reference (36).

2.1.2 General Formulation of the Envelope Equation

When the two transverse degrees of freedom, x and y, of particle motion are linearly
coupled, the K-V envelope equations no longer apply to the beam. In some simple cases,
like solenoid focusing, it is possible to transform to a rotating frame (e.g. the Larmor frame)
in which the single particle equations of motion decouple, but in general the problem is
most directly treated, and interpreted, in the laboratory frame.

The derivation of the appropriate envelope equation for coupled systems proceeds in
a different manner than the classic derivations of the K-V equations.3 2'4 7 One begins with
the paraxial single particle equations of motion, written as

v'(s) = M(s)v(s) (2-1)

where v(s) is a 4 x 1 column vector with elements (x, x', y, y') and M(s) is a 4 x 4
matrix describing the focusing system; s is the path length variable and a prime mark
denotes dIds. If the beam cross section is a uniformly filled ellipse, then the space charge

0 electrostatic and magnetostatic forces are linear and a space charge term may be included
in M(s); the form of this term is given in reference (36).

In the paraxial approximation, all particles in a monoenergetic beam have the same
value of longitudinal velocity, . , therefore all particles in a particular "slice" of the beam

* remain in that slice. To proceed to an envelope equation which describes the evolution
of the rms size of a slice as it propagates through a transport system, one defines the
quantities

* Ej(s) =-< vi(s)vj(s) > - < vi(s) >< vj(s) > (2- 2)

for i,j = 1, 2, 3,4 where the angle brackets denote an average over particles in a slice. The
beam covariance matrix E satisfies

0 F's) = M(s)E(s) + (M(s)E(s)) T  (2 - 3)

by virtue of Eq. (2-1); in Eq. (2-3), T denotes transpose. Equation (2-3) is the gener-
alization of the K-V envelope equations, the purely spatial components Ell, E:33, and

0 E13 = E31 defining the axes and orientation of the rms beam ellipse. Given an initial value
for the beam matrix, Eq. (2-3) allows it to be calculated at any point downstream from the

7
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launching point. In practice such an initial value may be easily calculated by an electron

gun code, at the entrance to the transport system, for example.

To recover the K-V envelope equations for decoupled 2 x 2 systems, we begin by noting

that M and E are of 2 x 2 block diagonal form for decoupled systems, assuming E(0) is.

Defining a, = Ell, O'.' -= E22, and ' hE12 = E21 the equations for the x-coordinate

may be written out using Eq. (2-3) as:

0a1 = 2o'x, (2-4)
a', = or'~' ± (-k2 + iqxz)o'x (2 - 5)

a',,X, = 2(-k 2 + !qx.)o', , (2- 6)

where k2 = -M 21 contains the external focusing strength, l /(3 2y 3), v = Budker's

parameter, and

1
qxz =1/2 1/2 1/2) (2-7)

o r. , (,0 . . + O'YY )

(The space charge term, derived in reference (36), has been included in Eqs. (2-4, 5, 6).)
Equations (2-4)-(2-6) are coupled non-linear equations but they do admit a simple constant

of motion, the un-normalized emittance ex defined by

= 16[axxazx, - .2 (2 - 8)

Using Eq. (2-4) to eliminate orx,, and Eq. (2-8) to eliminate a,' one may find a single
equation for OaXz. If we define

-2a , (2-9)

the factor 2 arising from the relation between a radius and an rms radius of an ellipse, the

resulting equation for r, is

I 2 41 E
r. = 0 (2-10)z X r, + r r3

which, along with the analogous equation for ry, are the K-V envelope equations.

When coupling between x and y motion is present, it is necessary in general to integrate

* Eq. (2-3) numerically. A computer program, XYENV, has been written for this purpose.

The program allows a completely general specification of the paraxial fields as functions

8



of axial distance. It has been used to study the envelope oscillations in the stellatron and
beam matching problems in the SLIA. As an example of the latter, we consider the behavior

*0 of a beam, initially matched in a uniform solenoid, as it propagates into a stellarator field.

Figure 2-1 shows plots of the maj" and minor beam radii versus distance (z) along
the system for different values of beam current. The beam starts out at z = -20 cm
matched in a 2.98 kG longitudinal field; this value is chosen so that the 1 MeV beam has aSq 1/ 2

0 20 cm Larmor wavelength. The beam emittance is taken to be e" = .. 3.kA, except for the
zero current case for which we have taken e = 0.1 rad-cm. A stellarator field with on-axis
gradient of 500 G/cm and period 9 cm is slowly turned on using a "tanh" function, in such
a way that Maxwell's equations are always satisfied in linear order; at z = 0 the stellarator

* field has reached half strength. One sees in the figure the development of oscillations in
the major and minor beam radii; the amplitude of the oscillations is seen to be fairly
insensitive to beam current in this example. In other cases one finds that certain modes
of envelope oscillation are linearly unstable, leading to large oscillation amplitudes. This
situation is analyzed in reference (36). (See Appendix A.)

2.1.3 Beam Matching: The SPIRAL Code

As mentioned earlier, special equilibria exist called matched solutions in which macro-
scopic properties repeat periodically with the period of the focusing system. For an actual
- as opposed to ideal - magnetic field system, there exist coil windings which include feeds
and coil terminations as well as winding errors and physical winding constraints. To design
a magnetic focusing system with these limitations that is matched to the desired beam

0 properties of a device requires certain numerical capabilities. Many of these capabilities
exist in the code SPIRAL.

The SPIRAL code has been developed and is used as a magnetic field coil design tool.
It computes the magnetic focusing fields from actual coil geometries, including feeds and
terminations. SPIRAL is a fully three-dimensional code which calculates the magnetic
fields using a Boit-Savart solver and has the capability to track single-particle trajectories
through magnetostatic fields. The code has many diagnostics, one being the ability to map
out the magnetic field structure in several ways, and another being the ability to track the
evolution of beam emittance and particle phase-space through a device. SPIRAL can also
initiate several distribution functions, including the K-V distribution as well as a simple
uniform beam distribution with specified emittance an(- divergence.

As an example, consider the focusing system in the SLIA experiment in which a beam
is to be matched from a diode source, through a compression region and into a combination
solenoid/stellarator transport section (see Fig. 2-2). The stellarator in this system is an
e = 2 (quadrupole) winding. Since the stellarator fields are to be turned either on or off

9
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in the SLIA, the system was designed such that the compression region was to match the
beam (energy 0.6 MeV and current 800 A) into the solenoidal field only. The stellarator
fields and any compensation magnets must work independently and provide minimal beam
disruption. In addition, it is desired that the stellarator coils begin at roughly the same
axial position as the solenoidal windings.

Using SPIRAL, it was found that shifting the stellarator windings to begin about 8.2
cm further down axially and putting a discrete quadrupole magnet centered at the opening

of the stellarator coils at a relative angle of 450 (see Table 2-1) provided a reasonable
match with minimal beam disturbance. Plots of the longitudinal single-particle trajectories
are shown in Fig. 2-3 for the compression/solenoidal configuration with and without
the stellarator fields. Also, Fig. 2-4 shows the transverse beam emittance for the same
two cases. It can be seen from the plots that the quadruople compensation coil and
stellarator coil placement provide minimum disruption of the beam as compared with the
compression/solenoidal system alone.

2.2 Beam Stability

Three fundamental types of stability have been investigated for the stellatron con-
figuration: single particle stability, envelope stability and collective stability. The basic
stability criterion for single particle motion in a linear, error-free stellarator field was given
in reference 29; two pass-bands and two stop-bands were found to exist in the parameter
space describing the focusing system. The derivation in reference 29 includes the dc space
charge effect of a uniform, round beam. In the sections which follow we will assume that
the fundamental stability criteria are satisfied and go on to discuss the types of instability
which can still occur under these conditions.

2.2.1 Orbital Resonances

Simple considerations balancing external focusing forces against the defocusing effects

of space charge lead to very large estimates for the limiting current in cyclic accelerators.
Much more stringent limits become apparent, however, when constraints on beam stability
are investigated. One interesting potential source of instability is the resonant excitation of
betatron oscillations due to field and focusing errors. When extra focusing fields are added
to the basic weak focusing betatron field, the possibilities for exciting disruptive orbital
resonances may become quite numerous. Avoidance of certain dangerous resonances is
essential for beam confinement. Since the betatron frequencies are in general dependent
both on beam energy and current, avoidance of resonances places definite limits on these
accelerator parameters. 40

When field errors are present, a particle in a stellatron is subject to a periodic per-

turbation of its orbit as it travels around the device. If the period of the perturbation is

10
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Table 2-1
Magnetic Field Coil Data

MAGNETIC FIELD COIL DATA

Focusing Coil: Single-ring coils at axial position z, radius r, and current I

FC1: z = 22 cm, r = 22 cm, and I = 86,000 amp-turns.

FC2: z = 22 cm, r = 26 cm, and I = -80,000 amp-turns.

FC3: z = 5 cm, r = 5 cm, and I -6,200 amp-turns.

FC4: z = 26 cm, r = 5 cm, and I = -7,200 amp-turns.

AGF - Axial Guide Field Coils: Two stacks of 62 single-ring coils beginning at axial
position z = 33.64 cm and ending at z = 138.37 cm. Inner coil set at r = 4.585 cm and

outer set at r = 5.518 cm, both sets carrying current of I = 1934.4 amps.

Stellarator Coils: The stellarator coil set consists of two sets of I = 2 helical quadrupole
coils, each consisting of two wires spread at an angle a, carrying current I. The quadrupole
set begins at axial position z and continues with a pitch length of 18 cm with a total length
L, and beginning at a relative angle a, with respect to a transverse axis. All coils have
radius r = 4.154 cm and current I = 3457 amps.

STI: z = 41.416 cm, L = 85.462 cm, ar = 45.38 ° , a, = 4.6600.

z = 41.812 cm, L = 84.670 cm, a, = 53.3 0 ', a, = 15'.

Quadrupole Lenses: The quadrupole lens is defined by an axial beginning position z,
an axial length L, a transverse magnetic field gradient strength B', and a relative angle to
the stellarator coil sets which is 0 = 45 ° .

QL1: z = 40.614 cm, L = 2 cm, B' = 340 G/m.
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not equal or nearly equal to a period of one of the four modes of betatron oscillation, then
the resulting driven oscillation remains of finite, usually tolerable amplitude; on the other

* hand, if there is equality or near equality between the periods of the driving force and a
natural betatron mode, transverse oscillation amplitudes can be driven to large values and
particles can be lost to the walls or beam emittances can grow intolerably.

It is a fairly simple matter to design a modified betatron or stellatron so that the
0 tunes are away from dangerous integer and half-integer values for low current beams. The

dependence of the tunes on current leads to limits on the current, in the usual way, but
the functional dependence of the tunes on current is not simple. For example, in the case
where only vertical and toroidal fields are present, the fast cyclotron mode tune decreases

41 with increasing current, whereas, the slow drift mode tune may increase with current,
depending on parameters. For typical designs, the fast mode tune is actually only weakly
dependent on current while the slow mode tune, while more sensitive to current, is so slow
(< 1) for all anticipated currents that it is never near a dangerous resonant value, at least
when the toroidal field is large.

The most basic resonance is the dipole resonance which occurs when a particle executes
an integer number of betatron oscillations around the machine. If this integer is large,
the resonance is usually not dangerous and is easily passed through during acceleration.
(Experimental evidence of this fact has been reported by the Irvine group.) At low energies
the ratio of toroidal to vertical field is usually large and the resonances encountered tend
to be of high order. As acceleration proceeds, however, the field ratio can drop to 0(1) or
less and the more dangerous low number resonances are crossed.

If we include the most general field and focusing errors allowed by Maxwell's equations
the equations for the betatron oscillations in the stellatron become

(1 + A 1 )x" + 1 + PcosmO- 6 + E", + 2-1X =
12 , 1(2-11)

- [sinm + ez,] y + (b + foe)y' + AL -

(l + AO)y" + [1 - Ptcosmo-+-6 -C zz:y =

2 L (2-12)

- [psinmO + ey + eo x - (b + eo,)x' + Eo

where A, is the momentum error, p is a dimensionless quadrupole strength, m is the
* number of field periods around the device and b is the ratio Beo/Bzo. ezo, ezx, ezy,

eilo, and cro are five arbitrary, but presumed small, periodic functions of 0 (period 27r)

11



representing errors in B, OB,/ar, OB,/Oz, B9, and Br respectively, and where we have
written n = 1 + 6. If we assume that an error term (i.e., the e's) behaves as - cosk9 for02
some integer k and if we treat the E's as infinitesimally small, then a perturbative treatment

gives a resonance when any of the following conditions hold:

m
- ±v± = ±k (2- 13)

* 2

- ± V - ± ± ±k(2-14)

*0 where the linear tunes v± are given by

2 = l+1 72± +A212( 154

0h = m + b/(1+ + A,) (2-16)

ft = 1/A1 + AO) + b/(1 + AI)2 (2-17)
2 4

0 = P/(1 + Ai) (2-18)

and where all (±) signs in (2-13, 14) may be chosen independently. The tunes are real
when the stability condition

* fi - 1 7iz2 > IAI (2-19)
1 4

is satisfied. Clearly (2-13) represents integer resonances and (2-14) (a slight generalization
of) half-integer resonances; (2-14) gives the location of the first stop-band for infinitesimal
c's while approximate locations of higher stop-bands involve additional terms of ±(m/2 -

When the error terms are of finite size (still small, but no longer infinitesimal) one
employs Floquet's theorem to locate the stop- and pass-bands in a standard way.

We present results using Floquet's theorem below for three special cases; in all of these
we will set m = 12 and b = 10.

Case 1: All e's vanish, but 6 - 0. This case corresponds simply to introducing an
asymmetry in the weak focusing field between radial and vertical directions (n : ). In Fig.
2-5 we show the stable and unstable regions of the 1A - 6 plane. The resonance conditions
V+ - V_ = m, of type (2-14) with k = 0, occurs when y = 59.75. Unstable regions of the

12



plane are crossed with solid lines, contours of equal growth rates. (The finite resolution
of the grid may miss some growth rate contours.) The five disjoint regions of instability

* have the following origin: The two regions adjacent to the 6-axis are the extensions into
regions of finite ps of the usual (ps = 0) betatron stability condition 0 < n < 1. The regions
adjacent to the line yu = 59.75 is the resonance region where v+ - v- - m, and the band
for p > 95.5 is the basic instability region where (2-19) is violated for our parameters.

On Fig. 2-5 two points have been labelled A and B in the stable and unstable regions,
respectively. In Fig. 2-5A we show results of a particle orbit integration for a stellatron
operated at point A; the orbit shown is the projection in the r-z plane. The orbit is clearly
well behaved. In Fig. 2-5B we show results of a similar orbit integration for operation

* at B. The orbit is plotted versus time in Fig. 2-5C where we can see clearly the growth
saturation, and turn-over of the oscillation amplitude due to nonlinearities. While the
saturation amplitude is not small, this resonance does not seem to be destructive and only
appears to couple energy back and forth between two oscillation modes, as in the modified
betatron.

49

Case 2: ezo = cos 38; all other errors vanish. This case considers a periodic error
in the vertical field. We illustrate, in Fig. 2-6, the p. - e plane where two regions of
instability are seen; there is the fundamental instability band where (2-19) is violated for
*u > 95.5 and a second band at p ; 89 at which one finds the condition v+ - v- = m + k
is approximately satisfied; here v+ ; 17, v- - 2, m = 12, k = 3. Results of particle
orbit integrations at points A and B are given in Figs. 2-6A and 2-6B. In this case we
must choose a rather small value of E for our orbit integrations; otherwise the resulting
energy error, represented by the inhomogeneous term of (2-11), causes an unacceptably
large driven (but non-resonant) oscillation. (Recall that all the error terms in (2-11, 12) are
normalized to the vertical field.) The only reason Fig. 2-6 includes such large f values is
so that the stop-band could be resolved by the mesh we used when applying the numerical
stability test. Near the i-axis, the stop-band is extremely narrow.

It is interesting to note that for y - 81 there is an integer resonance of the form
(2-13), m/2 - v- = k, (v- = k = 3); since such a resonance is due to the inhomogeneous
part of (2-11), it does not appear as an unstable band in Fig. 2-6 which, as with Fig. 2-5,
is obtained by analysis of only the homogeneous part of (2-11, 12). An orbit integration
(not illustrated) shows very strong disruption on this resonance, as expected of a low order
integer resonance.

Case 3: e0o = E cos 60; all other errors vanish. For our final case we consider a small
periodic bumpiness in the toroidal field, as would be produced by discrete toroidal field
coils. For this case, the stable and unstable regions of the yt - e plane are shown in Fig.
2-7. Here we see two unstable regions, the by-now-familiar band for p > 95.5, and a second

13
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near the point y 81, where one finds that v-_.. 3 and a condition of the form (2-14)

is satisfied for k = 6. Again we have labelled points A and B in the stable and unstable

regions; Figs. 2-7A and 2-7B, respectively, illustrate results of particle orbit integrations.
In this case, the effects of non-linearities are insufficient to prevent the particle orbit from

intersecting the pipe wall, located in this example 4 cm from the axis.

Many other examples could be given, of course; the above three cases were chosen

only to illustrate some possibilities.

To give some feeling for the global resonance situation we show, in Fig. 2-8, the

contours in the y - b plane, for fixed m, on which certain of the conditions (2-13, 14) are

satisfied. Clearly it is difficult if not impossible to avoid all resonances. The stellatron
experiment at UC Irvine' has demonstrated, however, that many high order (k > 20)

resonances may be passed through with virtually no beam disruption. Plots of the four

single particle tunes versus time for a particular shot of the Irvine device are given in Fig.

.2-9, clearly showing the crossing of integer values. A plot of beam current versus time
for the shot is given in Fig. 2-10 from which one sees that the current is lost gradually,

over the course of 50 ps during the second half of the shot, not in the abrupt manner
typical of an integer resonance crossing. (An electron makes ; 115 revolutions around the

device, per microsecond.) It may be, however, that while no single high order resonance is

responsible for the current loss, the net effect of crossing many of them in rapid succession

may be to induce a type of slow, diffusive particle loss. The above three cases, and other we
have considered, support one's intuition that low order (small k) resonances will be more

of a problem than large k resonances and may well limit the current and/or the energy
attainable in modified-betatron type devices.

When space charge is included in the calculation of the tunes, one finds that two tunes

are decreased and two are increased by the effect of space charge. The tunes all depend

on current through the combination current/b, from which we may draw the important

conclusion that the tunes are less sensitive to current the stronger is the toroidal field.

This is an important feature of the toroidal field and immediately suggests the use of a

large toroidal field for control of the tune shifts for large currents. While this is correct in

principle, a practical consideration may limit its application. Specifically, the toroidal field
needs to be large at injection time when space charge effects are large; during subsequent

* acceleration, then b (- Be/B,) must be kept fixed in order to keep the tunes fixed, that is,
B9 must be raised in direct proportion to the electron momentum. If B0 starts out large,

(initial fields of the order of 1 kG are typical in present experiments), practical limits to the
final beam energy become clear. Also, a very large toroidal field will probably complicate

the beam ejection problem at the end of the acceleration.
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The resonances described so far are all consequences of linear field errors, that is, the
single particle equations of motion are still linear in the transverse displacements x and

y in the presence of the field errors. A much expanded class of resonances is possible if

one considers the effect of non-linearities in the applied fields. A fully general treatment

of non-linear resonances would be very complicated but a single interesting example was
studied5" and can be reported on here.

We consider the magnetic field due to four wires carrying current (I, -I, I, -I)
wound on a cylinder of radius ro, in a helix of period 21r/k. To leading non-linear order
the fields in cylindrical coordinates are

Br(r, 6- kz) - Bokrsin2(0 - kz)[1 + 2(kr) 2J (2-20)

Be(r, 0- kz) Bokrcos2(0 -kz)[1 + (kr)2] (2-21)

Bz(r, 0 - kz) c_ -Bo(kr) 2 cos 2(0 - kz) (2- 22)

where B, = 16(Ik/c) kroK2(2kro). In normalized cartesian coordinates, 2kx - x, 2ky

y, 2kz -* z, and 2kct -- t, the equations of motion are

1 1 (2- 23)x~ ~ + _{L.2x 2cs+2Y iz (2-22

+ I[ ( + 1 2 + y2) cosz + ( + 6 2) sinz] }
- i(X2 Y2)c OS Z + 2xysinz

12 1 (2-24)

12X( 1  ) (2-25)

+ 1X24+41x2Y+y )cOsz-X(1+1X2)sinz]}

where a = eBo/4m-kc2. These equations have a constant of motion, P, + kPo where P,e

are canonical momenta:

ix -yi + 2i + a[(X2 - y2 )cosz +2xysinz] [1+ 1(X2 + Y2)] =constant (2- 26)
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The linear equations obtained from Eqs. (2-23, 24, 25) by neglecting all non-linear
terms have solutions which oscillate in z with frequencies 1- ± k± where

0

k±= [/(2/) (2-27)

and where f3. = i/c. The basic stability condition for these betatron oscillations is

< 1 (2-28)

If we return to the non-linear equations and treat the non-linearities perturbatively we

see that a non-linear term like x3 cos z will oscillate at frequencies 1- + q and - + q where
q consists of a sum of three of ±k±. In particular, the + q term will be resonant if
q = k+-2k_ = k- or

k+= 3k_ (2-29)

which occurs when

o0/I= 0.2 . (2-30)

Integration of the non-linear equations shows a dramatic instability, even for a/#, close
to 0.2. As an example, if we take y = 3 this gives a resonant value for a of 0.1886. Figure
2-11 shows the results of a numerical integration of Eqs. (2-23, 24, 25) for a = 0.175. The
solution to the linear equations for this a is of course completely well behaved.

The presence of a longitudinal magnetic field, in addition to the twisted quadrupole,
changes the values of k± and the stability condition but not the resonance condition (2-29).

k± becomes

-= g{ + 2a +2± [z (. +2)2+ 4 01/2 (2-31)

where

a. = -eB,/(m#-c 2k) (2- 32)

ao = 4a/O3, (2 - 33)

and the linear stability condition becomes
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S+ 1 > jaoj (2-34)

the resonance condition becomes

[1az + 112 - 9][91a + 1 2 - 1] + 100a o . (235)

It follows that no resonance is possible if

la+1< 1/3 or la-,+11>3 (2-36)

Figure 2-12 shows the Iaz + 11 - laol plane and the region of linear stability. The dotted
curve is a plot of the non-linear resonance condition, Eq. (2-35), which must be avoided
in practical designs.

2.2.2 Envelope Stability of t = 0 Systems

As alternatives to a twisted quadrupole or f = 2 stellarator field, poloidally symmetric
f = 0 fields have been investigated for use in high current beam transport. Two basic types
have been considered, the bumpy-torus betatron 51 which uses toroidal field lines which
bulge in and out periodically and the reversing solenoid lens accelerator5 2 which uses the
focusing action of periodically reversing solenoids which produce field cusps at their ends.
We have considered3 3 the stability of K-V beam envelopes in the presence of space charge
in these two focusing systems, following the approach of Struckmeier and Reiser54 who
treated the stability problem for e = 0 and t = 2 discrete element systems.

The K-V envelope equations are

*2K 2
X11 k (S) - -0(2-37)

2

Y1 2Sy_2K ey - 0 (2-38)

Y+k2Y X +Y y3

where k+,(s) represent external linear focusing, K is the beam perveance, and e , are
unnormalized beam emittances. In a torus with t = 0 focusing these K-V equations hold

in the Larmor frame with ez - e and

2= k 2 ( 1 + 1b2(S) (2-39)
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where b(s) - Beo(s)/Bo and we have taken the betatron field index n = 1/2. We will take
b(s) to be periodic with period S. In normalized variables the envelope equations become

+ 2 -2g 0 (2-40)\i/ x +y x3

_+ _Y 2g _ -=0 (2-41)
\7r/ X +y y 3;

where the dimensionless variable t = rs/S has been defined so that the focusing period is
7r. In Eqs. (2-40, 41), a dot means d/dt and

g = KS/ire

(x,y) = (X, Y)/(ES/7r)" 1

The two cases for b(t) corresponding to the bumpy torus (BT) and reversing solenoid
lens (RSL) are shown in Figure 2-13. In each case one wishes to know, (1) under what
circumstances do matched beam solutions, i.e. periodic solutions with period 7r exists to
Eqs. (2-40, 41), and (2) when are these solutions stable to small perturbations? The
second of these questions is of particular practical importance because one would like to
know whether a beam launched with nearly the correct, matched initial conditions will
remain nearly matched as it propagates through the focusing system.

To find matched beam solutions we set x = y = R in Eqs. (2-40, 41) since a cir-
cular matched beam is expected in a symmetric focusing system for a beam with equal
emittances in the two transverse planes. One then may find initial conditions R(0) and
/R(0) numerically such that the resulting solution is periodic with period 7r; such a solution
exists when the phase shift per period of single particle motion

*- -ri <i , (2-42)

which is the condition for stability of betatron oscillations. In the absence of space charge

(g = 0), y=-= p.; in general y < j o.

* To investigate stability of the matched solutions one carries out a straightforward
linearization of Eqs. (2-40, 41), writing

* x = R+ (2-43)

y= R+Y . (2-44)
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Defining 6± -6 ±6y one finds that the equations for 6+ and b- are decoupled, representing

independent modes of oscillation:

++ +_L+ 3b+= 0 (2-45)

_+ + 3 _=0 (2-46)

The "+" mode is a monopole or "breather" mode and the "-" mode is a quadrupcle or

elliptical mode.

Equations (2-45, 46) are linear equations with periodic coefficients to which Floquet's
theorem applies. The stability condition is

PIe < ir (2-47)

where yte is the phase shift per period of either the 6+ or b- equations. This is a more
stringent condition than Eq. (2-42), the condition for single particle stability. In fact we
have found that Eq. (2-47) implies that

p, < 7r/2 (2-48)

for the bumpy torus and RSL systems; this is also the envelope stability condition found
* by Struckmeier and Reiser." a When (2-48) is satisfied the beam current limit is set only

by the aperture size or by some other collective effect.

2.2.3 Negative Mass Instability

The negative mass instability in the modified betatron was studied by Sprangle and

Vomvoridis.26 They found that the longitudinal field coupled transverse and longitudinal

modes and that the field helped to reduce the growth rate of the instability. Godfrey and

Hughes 54 subsequently improved the dispcrsion relation, and resolved a puzzle about the

existence of a growth rate cutoff above a certain critical current, by including toroidal
corrections to the first order fields.

When strong focusing fields are added an important feature of the dispersion relation

is changed.4" Since the momentum compaction factor ci is greatly reduced, to a value less

than one, by the presence of the strong focusing fields, a transition energy is introduced

7t = a-1/2 (2-49)
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0

below which there is no negative mass effect; the beam consequently is stable for ener-

* gies below mc 2 t. This transition energy is derived in terms of system parameters (field

strengths, periods, etc.) in reference 40, attached here as an appendix.

Reference 40 derives the full linear eigenvalue problem for long wavelength, low fre-

quency collective modes in the stellatron. The eigenvalue problem is then solved in the
'smooth approximation,' which assumes that the wavelength of the perturbation is many

stellarator field periods long. This results in a dispersion relation identical in form to that

for the modified betatron, under the replacement of a single term; the dispersion relation

has been tested against a numerical solution of the eigenvalue problem and excellent agree-

ment has been found. The net effect of the stellarator windings, we have found, is to add

a smooth, transverse focusing term which can be large compared to the weak-focusing or

space charge defocusing terms; stellarator fields enhance stability in this sense; as a result,

increasing the stellarator field strength reduces the negative mass growth rate. Numerical

examples given in reference 40 quantify this effect.

2.2.4 Beam-Breakup Instability (BBU)

The BBU is the most serious instability facing the SLIA. The magnitude of the prob-

lem can be understood by examining the asymptotic formula for the maximum beam

displacement during the beam pulse in the n-th gap, as given by V.K. Neil et al.,5

exp(t'n)ex( (2- 50)

* where
where r = 5.49 X 10 4w-[ ] I(kA j 

( - 110nZ[ IkA] , (2 -51)
F. 5.9 lO4n~t.1WoBo[kG]

and where w = deflecting mode frequency, wo = 2r (785 MHz), I = beam current, and Bo

= solenoidal magnetic field.

This maximum amplitude occurs at a time t,, given by

Swin = 2IQ , (2-52)

where Q is the quality factor for the accelerating gap. The beam pulse is assumed to be

longer than in.

The coupling impedance, Z_, is given in the limit b > w by56

00

Zjj[Q] = -730'-wowImPi (w) , (2-53)
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where w is the gap width, b is the pipe radius, and PI(w) is the cavity response function.
Substituting this formula into the expression for f,, yields

fn = - 401 Vf[GeV]IIkAjImP(w) ,
Eg[MV/cm]BokG]b2 ' (2- 54)

0 where E. is the electric field in the gap, Egw is the energy gain per gap, and Vf is the
final beam energy. In the limit b z w, Godfrey5 7 has shown that the impedance falls as
b- 1 instead of b- 2 . The ATA gaps satisfy the expression given above, but the SLIA gaps
will be better represented by Godfrey's formula.

0 Figure 2-14 shows contours of constant F,, = 10, corresponding to n - 1000, plotted
in the E. - b plane for various combinations of I and Vf, assuming ImPl(w) = -0.7. There
is a clear advantage to designing gaps having as large as an Eg as possible. At present
LLNL operates at , 200 kV/cm, while Sandia has operated their gaps up to Z 400 kV/cm.
The limit, set by emission levels over areas of interest, must be experimentally studied with
the use of new electrode materials, coatings and conditioning techniques.

The cavity response function has been computed for the deflecting mode in ATA as
ImP(w) = -1.3. For a perfectly-coupled gap (ie. with no reflections) the response would
be roughly half the ATA value, ImPl(w) z -0.7. LLNL has designed gaps with nearly
optimal coupling, although they have not yet measured their BBU characteristics.

The BBU can be detuned through the use of nonlinear focusing fields. Solenoidal
and quadrupole focusing forces are both linear in the transverse displacement from the
matched reference orbit. The use of quadrupole focusing in the SLIA, therefore, does not
substantially affect the BBU. It acts only as an additional solenoidal focusing field. In the
smooth approximation this additional focusing can be calculated to be"8

* Beff = Bo[1 + , (2-55)

where eq is proportional to the quadrupole field strength. For eq < 1, the quadrupole

focusing yields only a modest reduction in the BBU growth rate compared with the result
with B 0 alone. By adding a sextupole field to the transport system, however, the focusing

fields will be quadratic in the displacement from the reference orbit, and the growth of
the BBU will be strongly affected.46 The nonlinear transverse focusing causes the betatron
wavelengths of the electrons to depend on the amplitude of their displacement from the
reference orbit. As the BBU instability drives the beam electrons off axis, therefore, their
response to the BBU driving mode becomes detuned, thereby preventing them from ex-
citing that mode in accelerating gaps downstream. Ion focusing also defeats the BBU by
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introducing a spread in betatron wavelength.4 5 Since the SLIA is planned to operate with-
* out IFR guiding, magnetic focusing systems that can spoil the BBU have been explored.

A twisted sextupole winding appears to offer great promise in this regard.

The twisted sextupole field is the equivalent of an I = 3 stellarator field, whose com-
ponents may be expressed (to quadratic order in x and y) as

B 27 Boa [2xy cos(3as) - (x2 - y2 ) sin(3as)] (2- 56)
16

By 27 e CBoa' 2[(x2 - y2 ) cos(3as) + 2xy sin(3as)] (2 - 57)

These fields add to the other fields (longitudinal field, quadrupole field, and vertical field
on the bends) in the SLIA configuration.

The current that must be used to excite a continuous sextupole winding to produce
a desired shear in the field on axis depends strongly on the radius of the sextupole coil,
as shown in Figure 2-15. The parameter e, on that figure measures the sextupole field
strength. When E, = 1, the amplitude of the sextupole field equals the solenoidal field,

B0 . Figure 2-15 is plotted for B0 = 5 kG. For the SLIA, where the vacuum vessel has
a radius of 3 cm, the current required in the sextupole coils will be 240 kA for e, =
6. While this current is large, the inductance of the sextupole winding is small, as is the
energy associated with this field.

The effect of this field is illustrated in Figure 2-16. This figure shows the beam profile
after passing through 800 gaps. The beam pulse is 30 ns long, and t = 0 on the figure
corresponds to the time that the beam head passes the 800th gap. The gaps in this example
are modeled by an impulse model developed by V.K. Neil et al.55 The gap characteristics
are assumed similar to those in ATA (Z±/Q = 10 Q, Q = 4, a deflecting mode frequency of

785 MHz, and energy gain per cavity of 0.3 MeV). The final energy of this accelerator would
be 241 MeV (1 MeV injected + 800 gaps x 0.3 MeV/gap). The transport system between
gaps is similar to that planned for the SLIA (Bo = 5 kG, quadrupole field amplitude of eq

= 0.3, quadrupole pitch length of Lq = 18 cm), with the addition of a continuously-twisted
sextupole field (e. = 6 and L. = 18 cm). The incident electron beam at the first gap has
a current of 10 kA, an energy of 1 MeV, and is off-axis by 10-' cm. The beam is injected
without energy spread, and the model allows no energy spread to develop as the electrons

are accelerated; energy spread should be stabilizing for the BBU since it independently
introduces a spread in the betatron wavelength. Without the sextupole field, Figure 2-16
shows that the amplitude of the beam displacement from the axis would be ;, 10' cm after
800 gaps; ie. the beam would be catastrophically unstable. With the sextupole field, the
beam displacement is limited to , 1 cm, as seen on the figure. The beam displacement
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saturates at this amplitude before the 400th gap, and remains stable through the 800th

* gap, which was the final gap in the calculation.

Figure 2-17 shows the same calculation carried out for a 40 kA beam. Again, the
sextupole field clamps the BBU growth when the displacement reaches - 1 cm amplitude.

Other tests have demonstrated that the saturation of the BBU near amplitudes of 1
* cm is insensitive to the initial amplitude. When the initial amplitude in Figure 2-16 is

increased from 10- 4 cm to 0.1 cm, the saturation occurs after fewer gaps, but the saturated

amplitude is still 1 1 cm.

These calculations offer the promise of defeating the BBU with high-order multipole
* fields, such as sextupoles. The effect of these fields on the beam emittance or on beam

stability other than the BBU has not yet been investigated. These studies are on-going at
the present time.

Shielded gaps may offer yet another means to control the BBU. In the SLIA conceptual
0 design shielded gaps are used to avoid the low-frequency beam displacement in off-axis

pipes due to return-current asymmetries in the feed. No measurable deflection of beams
was observed with shielded gaps, within diagnostic resolution, in the experiments of Wilson

at NBS and Hasti at SNLA. Miller et al. of SNLA have also studied a version of these

0 gaps in the RADLAC development program. The high-frequency character of these gaps

is unknown, and must be evaluated in "cold-test" cavity measurements.

Miller et al.59 have used the SOS code, a 3-D code developed at Mission Research

Corporation (MRC), to analyze the differences between pillbox cavities of the type used
0 at ATA and the so-called "shielded-gap" configurations which are envisioned for the SLIA.

Their model utilized perfectly-conducting structures everywhere (including the feed ter-

mination). and therefore does not provide design data. The model is useful, however, in
displaying the relative differences between pillbox and shielded-gap configurations. Their

conclusion is that a shielded-gap, made by inserting a short length of coaxial transmission
line in a pillbox cavity, can substantially reduce the coupling impedance to the BBU in-

stability, provided that the coax is designed so that the lowest TE mode cutoff frequency

is greater than the frequency of the TM cavity mode which drives the BBU. More recent

calculations at MRC60 and at LLNL61 have found that shielded-gap configurations can in-
*P troduce new, weakly-damped modes which increase the BBU coupling impedance. These

calculations have so far not found any shielded-gap design that substantially improves the

BBU coupling impedance over that obtainable with a simple radial line. This subject is
still under study at SAIC, MRC, and LLNL.
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2.3 The Spiral Line Induction Accelerator (SLIA)

0 Our investigations of the properties of high current, strong focused accelerators led to
the joint proposal, in 1985, of what is now called the SLIA, by SAIC and Pulse Sciences,
Inc. The SLIA, illustrated in Figure 2-18, consists of a continuous beam line which is
recirculated through an induction module multiple times; the number of recirculations
depei'_.': on the sizes of the beam pipe and the module cores.

The SLIA as proposed has several advantages over closed orbit machines. In particular,
injection and ejection become much easier than for a closed orbit device. In addition, the
open-ended design of the SLIA allows very long pulse lengths to be envisioned; the pulse
length is set by the injector pulse length rather than by the circulation time, as in a closed
orbit machine. The magnetic fields used for focusing and bending in the SLIA beam line
are effectively static in time, simplifying their design and allowing low field errors to be
achieved. It may even be possible to use permanent magnets for some of the fields in
the transport line. These advantages come at the cost of added mechanical and electrical

0 complexity, however. The beam transport line design is complicated by the simultaneous
presence of many coils and the induction module design is quite novel, requiring careful
considerations to reduce asymmetries in the accelerating fields applied to the different gaps.
Nonetheless, based on a 1985 proposal by SAIC and PSI, a SLIA experiment was funded

40 and a transport line was built to study the properties of a strong focused recirculator. This
experiment is now planned to lead to a 2 module, 3-turn machine producing an 8.5 MeV,

10 kA beam.

The research funded by ONR under this contract contributed and continues to con-
& tribute directly to the evolution of the SLIA by its oncentration on fundamental issues of

beam transport and stability in strong focused systems. The original work by Roberson,

Mondelli and Chernin on momentum compaction in the stellatron has been basic to the
design of the recirculator. The work performed on beam stability and envelope matching
has also facilitated the design of the beam line. One of the most fundamental physics is-
sues for the SLIA, the beam break-up instability, has been extensively studied under ONR
sponsorship, resulting in some promising proposals for stabilization by non-linear fields
and by energy spread. Work on orbital resonances, while most pertinent to closed orbit
devices in which a beam circulates many times, may also find application in the SLIA, or

* certainly in the induction synchrotron accelerator (ISA) for which it has been proposed to
use the SLIA as an injector.

Though a number of important physics and design issues remain to be resolved, the
technology represented by the SLIA appears to be a promising direction for future research

40
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in high power electron accelerators. ONR sponsorship of the basic physics and scaling of

strong focused, compact accelerators has laid important groundwork for on-going research

in an area of continuing interest to the Navy.
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3.0 Conclusions and Recommendations

Our studies of compact, strong focused, high current electron accelerators have ad-
dressed many aspects of beam behavior in these devices. We have found that systems
employing t = 2 stellarator windings can be designed to be stable and robust, with excel-

lent energy bandwidth. Experimental programs at NRL, UC Irvine, and Pulse Sciences,
Inc. continue to investigate the properties of these focusing systems.

The criteria for stability, both due to single particle resonances and to collective effects,
are reasonably well understood at this point, except, perhaps, for high frequency phenom-
ena like the short wavelength negative mass instability and the electromagnetic three- wave
instability. It appears that current limits in closed devices like the betatron/stellatron, are

due to tune shifts and to the negative mass instability, while in induction linacs, including
SLIA configurations, current is limited by the beam break-up instability. Energy limits are
similarly constrained by tune shifts in closed devices if one realizes the condition required
to avoid resonanaces is to raise all fields proportionally, in particular, BeaB,; in the SLIA,

0 energy limits will be dictated by induction module technology and by the number of re-
circulations allowed by pipe and core radii. Finally, beam pulse length limits in a closed
device are clearly bounded by the circumference/c while in a SLIA or induction linac,
output pulse length is limited only by injector pulse length and the number of volt-seconds

0 that can be supplied to the cores (for a continuous beam). These conclusions, and the

analyses that led to them, represent the main results of our work on compact electron

accelerators.

There remain several important issues in these devices which require further study.

Prominent among these is the stabilization of the beam break-up instability in the SLIA.
Many lines of investigation should be followed, especially the potential role of energy

spread, including the variation in recirculation time with energy, and the application of

non-linear fields. Also, the use of feed-forward stabilization, whereby the kick received by

the beam is sensed as it exits a module and a signal is sent across a chord of the device to
a point at which a correcting kick is applied, may have practical application in the SLIA.
Virtually no work has been done cn this question.

The related issues of beam matching and beam quality in these devices also deserve
more thorough treatments. Techniques for matching a beam on and off the stellarator
field in order to minimize the resulting envelope oscillations, are presently imperfect and
much work needs to be done along these lines. Very little also is presently known about

required field tolerances and the effect of field errors on beam behavior in general and on
beam quality in particular.
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Though significant progress has been made in the understanding of compact electron
accelerators further work, both theoretical and experimental, is essential to ensure that
practical, workable designs can be developed.
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* The magnetic field configurations consisting of the combination of a weak-focusing betatron field,
toroidal field and either I = 0 or I = 2 stellarator windings are assessed for their potential as focusing
fields for high-current cyclic electron accelerators. These accelerators, named "stellatrons," are shown
to have improved tolerance to mismatch between the average beam energy and the equilibrium beam
energy that matches the vertical magnetic field compared to devices without the stellarator fields. Both
analytical calculations in the paraxial approximation and numerical particle-orbit calculations are
presented to substantiate this finding. The problems of orbital resonances and of injection into these ;

* devices are discussed. Earlier work in the field, much of it unpublished, is discussed and compared
with the stellatron concept.

I. INTRODUCTION

Electron accelerators built to carry out nuclear and high-energy physics experi-
* ments typically carry average currents of less than an ampere at kinetic energies

as high as 50 GeV. During the past twenty years, significant progress has been
made in high-current, low-energy beam generation. These intense-beam ac-
celerators are generally motivated by applications, mostly for radiation source
development and for controlled nuclear fusion research. Megampere currents at
megavolt energies are now routinely obtained using pulselines charged by Marx

• capacitor banks. connected to cold cathode (field-emission) diodes.'
Multikiloampere electron currents at tens of megavolts have been obtained

using linear induction accelerators. 2" Recently, there has been considerable
interest in extending the current-carrying capabilities of cyclic induction ac-
celerators such as variations of the betatron and linear induction modules in cyclic
(racetrack or other) configurations.

t Present Addre,%' Scicnce Applications, Inc.. McLean. VA 22102 U.S.A.
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80 C. W. ROBERSON. A. MONDELI AND D. CHERNIN

Conventional betatrons7'8 are current limited due to the defocusing effects of
space charge at injection. Overcoming the space-charge limit requires high-energy
injection. By injecting a beam at high energy, approximately 200 A of circulating
current has been obtained in a small betatron in which the beam was ultimately
accelerated to 100 MeV.9 In another experiment using a 4-MeV induction linac,
approximately 500 A of circulating current has been confined in a conventional
betatron configuration.'° Devices designed to improve the current-carrying capa-
bility of betatrons have included fixed-field altenating-gradient (FFAG) beta-
trons"t and plasma betatrons. 2 The FFAG uses alternating gradient strong
focusing fields' 3 ' 4 in addition to a vertical betatron field. In the FFAG, the
magnetic fields remain constant in time, while the flux linking the particle orbit is
changed to produce an inductive electric field. To avoid single-particle resonances
as the energy is increased, the equilibrium radius of the orbit is allowed to vary
with energy, keeping the orbits "self-similar". The currents achieved in pro-
totypes t" have been modest, limited by the tune shift due to space-charge effects.

The plasma betatron employs a toroidal magnetic field in addition to the
betatron field. A plasma is injected or created in the device and the applied
inductive electric field causes a portion of the electron distribution to gain more
energy from the electric field between collisions than it loses during a collision, a
phenomenon called electron runaway."4 In magnetic-fusion devices, runaway
currents of hundreds of amperes at energies of several MeV have been
obtained. 15.16.39

The HIPAC'7 device, using only a toroidal magnetic field with a cross-field
injection scheme known as inductive charging,'8 has been investigated in connec-
tion with an ion-acceleration concept. Average electron densities of 4 x 109 cm-3.
have been achieved. The trapped electrons are not accelerated in this device, but
are used instead to create a strong potential well for ions.

In another series of experiments,' 9 average electron densities of 1010 cm-' have
been achieved using inductive charging in toroidal device. A total charge of 100
microcoulombs has been trapped, which if accelerated to relativistic velocities
would result in a current of 10 kA. With a time-independent vertical field and a
transformer used to produce an inductive electric field, only small electron current
(<50 A) is obtained. The results indicate that the electric cloud is not accelerated,
but remains trapped in the torus.

Current interest has been focused on high-current nonneutral electron-
beam acceleration.2' Recently, a modified betatron configuration has been sug-
gested 2

1
- 23 that employs a conventional weak-focusing betatron field and toroidal

magnetic field. The principal advantage offered by the modified betatron is that
the toroidal magnetic field reduces the required injection energy by containing the
space-charge defocusing forces. Extensive analysis of this configuration has been
carried out both analytically and numerically. 2 '-

Recent experiments employing inductive charging in a modified betatron con-
figuration have achieved beam currents of approximately 200 A and energies of
approximately I M -_- 'ir g 30-kV in ection vcltage." In an elongated or
"stretched" modified betatron, beam currents of approximately 50 A at energies
of I MeV have been achieved using 50-kV injection.'
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Another approach to high-current cyclic accelerators is the use of linear
induction modules in a cyclic configuration. One such scheme3 has used a
long-pulse linear induction module with beam recircuftion through isolated beam
paths for each transit through the induction module.36 This configuration is
essentially a folded induction linac. Yet another approach is to use a long-pulse
induction module in a racetrack geometry. High currents can be handled by
adding a toroidal magnetic field. This field introduces particle drifts in the bends,
however, which can be averaged out by the addition of stellarator windings.3" For
reasonable parameters, the stellarator windings can contain particles with energies
up to approximately 1 MeV per kilogauss of stellerator field on a I-m radius of
curvature bend,3" based on single-particle numerical orbit integrations.

If a time-dependent vertical magnetic field is added to the bends in order to
guide the beam, then the stellerator windings provide bandwidth for an energy
mismatch between the beam energy and the matched energy in the vertical field.
The matched energy in the vertical magnetic field is approximately 30 MeV/
kG-m.

38

The bandwidth can be important, not only because it allows one to handle
beams with a significant variation in kinetic energy, but also because it reduces the
sensitivity of the system to abrupt changes such as occur at accelerating gaps.

This paper describes an analysis of a configuration consisting of a combination
of stellarator and betatron fields, called the stellatron. ' 4 a The motivation, in
part, has been to increase the allowed mismatch between the beam energy and the
betatron field. In both the conventional and modified betatron, the allowed
mismatch Ay/yo is given by

Yo0 ro

where n is the betatron field index and a/o is the inverse aspect ratio of the
accelerator chamber. Typically a/r0

= 0.1 and so Ay/,yo0 s2.5% is the allowed
bandwidth for mismatch in the conventional and modified betatron for n = 1/2.
Since the vertical field at injection in several planned experiments is generally less
than 100 G, field errors of a few gauss can cause loss of the beam.

By adding a stellarator field to a cyclic accelerator, a strong-focusing system is
obtained that can sustain high currents and large mismatch between particle
energy and vertical field. Stellarator fields are most simply characterized by two
integers, I and m. these being respectively the number of field periods in the
poloidal and toroidal directions in the device (see Eq. (3) and Fig. 3A below].
Two special cases have been treated in some detail. The 1 2 stellatron °40' is
shown in Fig. 1. The stellarator field consists of a toroidal field plus a continuously
twisted quadrupole field. The twisted quadrupole configuration is analogous to the
alternating-gradient strong-focusing fields that are routinely utilized in modern
synchrotrons.

The I = 0 stellatron shown in Fig. 2 is similar to a bumpy-torus fusion device
with the addition of the betatron field. Here, the varying radial-field component
leads to strong focusing. The I = I configuration has no transverse field gradient at
the beam axis, and therefore is only weakly focused. Stellatrons with I z_3 are
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FIGURE I The I = 2 stellatron. 0

high-shear devices with low fields near the magnetic axis. The nonlinear proper-
ties of these configurations may be useful in conjunction with 1 =0 or 1 = 2
focusing fields to provide detuning of orbital resonances.

In Section II, the stability properties of the I =0 and 1 = 2 configurations are
derived, including the effects of the self fields of the beam. The particle tunes are
calculated. In Section III particle orbits for the conventional and modified
betatrons and the I = 0 and 2 stellatrons are calculated numerically and compared.
The energy-mismatch bandwidth of the stellatron is calculated as a function of the
focusing strength. The sensitivity of the particle orbits to the betatron field index
in the stellatron is also examined.

In Section IV, integer orbital resonances in the stellatrons are discussed. Integer
orbital resonances occur when the betatron "tune" (the number of betatron
wavelengths around the circumference) is an integer. In Section V, various
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FIGURE 2 The 1 = 0 stellatron.
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high-current injection schemes are described and the potential advantages offered
* by the stellatron are examined. Section VI is a discussion of the available

literature (much of it unpublished), and Section VII presents a summary of the
results. C

1I. PARTICLE ORBITS IN THE PARAXIAL APPROXIMATION

A linearized or paraxial analysis of particle orbits, valid for a particle that is
"near" a circular design orbit with "nearly" the correct energy to be matched on
that orbit, has been carried out to gain some quantitative understanding of
particle behavior in the stellatron. Orbits of particles not satisfying these condi-
tions must in general be found numerically, as discussed in the following section.

* The linearized analysis, however, yields important information about the fre-
quency and the stability of the particle oscillations about the design orbit.

The analysis employs a general magnetic-field configuration which we describe
in the coordinates of Fig. 3A. The applied fields consist, in part, of a vertical and
radial "betatron" field of the form

1b nz B2 oF+Bo1 - n(r -ro), (1)

where (r, z) = (rt, 0) is the location of the design orbit (assumed circular), B. 0 is
the vertical field at the design orbit, and n is the betatron field index. A toroidal
field,

B9I- B 1 ~ro] (2)

is superimposed on (1), as well as a "stellarator" or multipole field which is
written in the cylindrical approximation as the negative gradient of the scalar
potential

Fs(p, (0, s) -_B 21 1 (kp) sin (14 + ks), (3)
* k

where k = r/r, and B,,, are constants and I and m, referred to as the poloidal and
toroidal field numbers respectively, are taken as integers. In addition, s is defined
to be -r,,O, so that (p, .,, s) is a righthanded system. The axis of the stellarator
field is assumed to be aligned with the symmetry plane of the betatron field, z = 0.

Each of the fields ()-(3) has its own special purpose. The betatron field (1), of
course, acts simply to cancel the centrifugal force experienced by a circulating
particle. In a stellatron. this field rises with the particle energy so that the betatron
condition is (at least approximately) satisfied. The weak-focusing nature of (1),
when n is between I) and 1, which is crucial to the successful operation of
betatrons, is of secondary importance to the stellatron. Stable orbits still occur in
the stellatron when it is outside of the interval (0, 1). The stellatron configuration

* therefore has the %irtue of being insensitive to errors in the vertical field or its
gradient. This insensitivity has beneficial consequences in practical designs.
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FIGURE 3 Gcmetrv and coordinate systems. The origin in Fig. 3A is at the center of a torus of
major radius r,. Fig. 3B illustrates a cut along the minor cross section. showing the beam and
individual particle positons.

A toroidal field (2) is added to the conventional betatron in the hope of
increasing the contained current. Indeed, it has been found that with only fields S
(1) and (2) the beam densities which can be contained in equilibrium increase by a
factor (BeJ2B:)2. for large B9, over those in a conventional betatron, (1). Addi-
tionally, the toroidal field acts to control the tune shift due to the effects of space
charge. This feature is important when orbital resonances must be avoided.

The stellarator field (3) is added to provide the beneficial effects of alternating-
gradient strong focusing. For I = 0 or 2, Eq. (3) gives an alternating gradient field S
component at the design orbit. This field greatly improves the momentum
compaction over that of a configuration consisting of (1) and (2) only, and so
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greatly relaxes certain design tolerances of the machine. Windings of other
* f-number may also be useful; in particular fields with I 3 may help in controlling

orbital resonances, but the analysis must be done numerically. The 1= 1 field
produces an oscillating magnetic field (not a field gradient) on the axis; such a
configuration would not possess a circular design orbit and is not expected to
possess any noteworthy focusing properties. This paper is concerned only with
stellatrons having 1= 0 (a "bumpy torus") and I = 2 (a "twisted quadrupole").

* Since the stellatron is intended to carry large currents, it becomes important to
consider the effects of the self fields of the beam. In general, this is an extremely
hard problem. To make progress analytically, a simple model for these fields is
assumed, consisting of a circular beam cross section (minor radius rb) and uniform
density with center located at (r + Ar, Az) in a perfectly conducting cylindrical
chamber of radius a (Fig. 3B). The self fields in the stellatron at the particle

* location (ro + Ar + 5r, Az + 5z) are given by

E,=-2rnoe (Sr + r2 Ar) (4a)
a2

E, = 0 (4b)

E. = -2rrnoe 8z + Az) (4c)

B, = 13oE (4d)

Be = 0 (4e)

B = -3oE, (4f)

in cgs units, where n,, is the beam density, -e is the electron charge, and 13 = v0/c
is the velocity of a particle on the design orbit normalized to the speed of light. In
Eqs. (4a-f), the first term in each set of parentlteses is due to the self field of the
beam, while the second term is due to the image of the beam in the perfectly
conducting wall. Toroidal corre;tions to Eqs. (4) may be important in some cases
but are ignored here.

1 = 2 Stellatron

The case I = 2 is considered first in detail since this case, rather than I = 0,
corresponds most closely to a conventional quadrupole strong-focusing system.
The I = 2 stellarator field near the axis is, from (3)

B3 = kB,,{[ z, cos mO- r, sin mO 1i +I r, cos mO + z, sin mO 12}, (5)

where r = r - r, z, = :. Taking the fields (1), (2), (4), (5) and using them in the
equations of motion gi'cs equations correct to first order in the small quantities
r1/ro, Ar/ro, zr,. and Az.'r,,

n + cos oHir, - Icug r1 -Ar+- 'I
2y(21\ a 2 /r

-f).(i'O Vol -(.tfl~o sin mO)z, +fle,,z, (6a)

... .. ...... .... . . . -.-S- m
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0 n .cosm8)z,-2 zt-Az + -Aa.,-(6L a fls mO)r,-fleo1ri (6b)

0 
= 0, (6c)

where flzo = eB.0/m,yoc, g± = kroB,o, wB =4rnoe/my,, m,, is the electron

mass, and vqI = r,0o+ ro01.A subscript, 0, refers to quantities evaluated on the
design orbit where vo/ro = 0,o and dots denotes time derivatives.

As they stand, Eqs (6a-c) are not straightforward to solve since they involve 0

both the motion of the particle about the beam center and the motion of the beam
center about the design orbit. Since r, = Ar + Sr and z, = Az + Sz, separate solu-

tions are required for (r1, z,) and (Ar, Az). A self-consistent set of equations for
both beam-center motion and for motion of particles about the beam center may
be found, however, by averaging (6a-b) over a distribution of particle initial
conditions. Details of this averaging procedure are given in the Appendix. The 0
result is that motion of the beam center is governed by the equations

2 2

,Az + (n -a2 L .cos m8' Az = -( sin mO')Ar- b (7b) S

where we have changed independent variables from (0, t) to (0', t') (0, t - 8/fo),
i.e.. Eqs. (7a-b) describe the movement of the beam center as seen by a reference
particle moving with angular velocity (.. In Eq. (7), the notation n, -
W'/(2_Y2fl o), b - Bo/Bo, and _t _ 13ovi3g is introduced. In Eq. (7a), the quantity
(-y) is just the ensemble average of the difference in energy between a particle
and the reference particle, i.e. (yl) - (y-3yo). (-y) is independent of time and for
a matched beam, (y,) = 0. Once Eq. (7) is solved, the solution may be inserted
into Eqs. (6a, b) which may then be solved for the location of any individual
particle. The method used for solving Eq. (7) is described below, and may be used
on Eq. (6) as well.

Equations (7a, b) may be completely solved in the special case n = 1/2, a fact 0
which traces its origin to the poloidal symmetiy this value of n imposes on the
restoring forces experienced by the beam. Although the solution is special in this
sense, it is expected to share most of its features with the solution for arbitrary n
(which must be obtained numerically) since the particle focusing should be

dominated by the quadrupole strength 1A and only be weakly affected by the
precise value of n. For n = 1/2, then, define the complex variable = (Ar + iAz)lr,)
for which Eqs. (7a, b) give the equation

"+ ibt'+ 12 n, + 4e"' * (A) (8)

where (A) is the momentum mismatch (y 1)/(t32yo). In Eq. (8), primes denote /00,'
and art asterisk denotes complex conjugate. The further change of variable =



THE STELLATRON ACCELERATOR 87

4,eMO'
1
2 yields an equation with constant coefficients,

+ 4+i(m+b)I,+ .nr -mb m(
a 2 4/

the solution to which consists of a particular solution plus a sum of exponentials of
the form ,oe"' -O' where t'o is a constant and v are given by

V =I + rh2 :j (ilf,2 + A )1/2"2 I/ 2, (10)

where i = 1/2 - r 2/a2 n, + b2/4, rh = m + b. A particular solution to Eq. (9) is

-lp = AeI 2 + Be - '/ 2 , ( 1)

where

A(A) (12)
2 1 rl r,2[m mb_2+ an, _ a 2 n.

2 ( (13)
_E , + I 2b 2bl2 a 

t v2  m +mb- 2+ '!f n ,

Referring back to the definitions of f and 41, it is evident that B gives the
"zero-frequency" part of the radial shift due to a beam with momentum mismatch
(A), that is, B/(A) is the momentum compaction factor, which may be made small
by choosing A. large. Setting g = 0 in Eq. (13) recovers the usual result for a
conventional betatron or modified betatron. (Addition of a toroidal field to a

* conventional betatron does not affect momentum compaction.)
The small oscillations of the beam center are stable (v,, are real) if and only if

three conditions are satisfied

+ +r2> (14a)
(i - rIth )2- .> (14b)

*,fi2 + 2 >0. (14c)

These conditions are summarized in Fig. 4, where the stable region of parameter
space is illustrated in terms of the auxiliary variables u = 4i/ r 2 and v = Igl/rit2 .

Typically one operates in the stable region with u < 1. The orbital stability
requirement places strict limits on the size of g that can be tolerated, i.e., strict
limits on the achievable momentum compaction for given b and m. Any experi-

* ment must be designed so that u and v remain in the stable region for all time- a
sample experimental trajectory is illustrated in the figure. For a low current beam
A is positive and Eq. (14b) gives the only nontrivial condition

2Jim' +rb- 11 >12AI (15)

The orbital stability criteria for individual particle motion within the beam are
• of identical form to Eqs. (14a-c) with the replacement, in the definition of h, of

0



88 C. W. ROBERSON, A. MONDEI I AND D. CHERNIN

0.V A 2 STABILITY PLANE (n - 1/2J EXPERIMENT
0.4- u-(Ib*+ 2- 4n)llm +Wb I ,- 10CA •iC £ ,,1

0.3 m -Ua

0.2 - *2B 0 ,, 118 o - 17 m
UNSTAILIE UNTALET - 7-100

0.1- S

1.0 0.0 1.0 2.0

Ju
'UbU

FIGURE 4 The I = 2 stability plane. u and v are defined in the tev The arrow indicates a sample
experimental trajectory.

(rda) 2n, -- n. That this is so may be seen by an analysis of Eqs. (6a, b) exactly
parallel to that carried out for Eqs. (7a, b) considering that now, in Eqs. (6a, b), Ar

and Az are known quantities. With this substitution in Eq. (13), th zero-
frequency term in the individual particle motion is obtained as

A-(A)(16)

BA= m t + Zmmb _ 12_ t

where A = y,/y0 13o is proportional to the energy difference between the individual.
electron energy and the matched beam energy. With VL = 0, the results for a
conventional betatron and a modified betatron are obtained. This solution with 0

v= 0 suffers a loss of momentum compaction. i.e., Bp --- ,when n, passes

through 1/2. In a conventional betatron, n, 1/2 is required for orbital stability.

The modified betatron, however, would typically use n, > 1/2 at injection, and

would then pass through n, = 1/2 during acceleration, since n, x y/-. This transi-

tion at n, = 12 corresponds to a momentary loss of equilibrium in the modified
betatron as the configuration switches from a diamagnetic to a paramagnetic S

equilibrium. -' 27

This transition can be avoided in the stellatron by using large {/I. The stability

condition (14b), however, sets an upper limit to l/z4 for a particular choice of i, b

and n,. The requirement on . may be expressed as

(n' - ll2)(m2 +ib+n - 1/2) < 2 <(n, - 1/2+mr2
/4 +mrb/2) 2 . (17)

For the condition (17) to be meaningful, n, must satisfy

2 2

which is clearly compatible with n, >> 1/2. The 1 = 2 stellatron, therefore, can avoid
a loss of momentum compaction during acceleration, while retaining the ability to 5

use large n, at iniection.

0.3- 2

/ . ro- 
1000
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1 = 0 Stellatron

The I 0 stellatron has fields given by

B = Bomx sin m8 (19a)

B'o - B,0 cos m0 (19b)
B' = 1B,0 my sin mO (19c)

in a cylindrical (r. 0, z) coordinate system (Fig. 3), where x = rt/ro and y = z1 /ro.
Using the procedure described above for linearizing the equations of motion in
the displacement from a reference orbit and using the paraxial approximation for
the electron motion with n = 1/2, the equations of motion for single elect-
rons including beam self-fields may be expressed as

*p 1 24 +E 2Pt
•0"+ -12-4n, +b (l+cos20,) 2 =---exp [ (20.,+ sin 20.) , (20)

m nP0  2m

where e Bo/Boo, 0 , = mO/2, P0 is the momentum of a particle which is matched
on the reference orbit, SP is the "momentum error", and

=(x + iy) exp [ Jb( + e cos mO) do]. (21)

In Eq. (20), n, will in general depend on 0 in a way governed by an envelope
equation, thereby making the inclusion of self-field effects more difficult than for
the I = 2 case in which a constant beam radius can be maintained." Consequently,
only single-particle orbits will be considered.

Equation (20) is a Hill equation, for which there are theorems concerning
characteristic frequencies and stability." The Floquet solutions to this equation
for n, = 0, are of the general form

41= e Ce'2' e-, (22)
n-

which display an infinite set of natural oscillations.at the frequencies, v ± 2n. The
value of v can be determined numerically for a given set of accelerator parame-
ters, but the dependence of v on these parameters is not known analytically.

It is possible to determine and display the regions of parameter space where v
is real, i.e., where the motion is stable. Starting with the homogeneous equation,

S"'+ 1-2 [2+ b2(1+e cos 20,) 2Iqi = 0, (23)

the solution 4(.r), which satisfies 4/(0) = I and 4k(0) = 0 is constructed numerically.
The stability condition'" is ItP(ar)l < 1, which is illustrated in Fig. 5 for a particular
example. The intersections of the unstable regions with the abscissa are given by

1
;- b2 + 2)=q 2 ; q=1,2... (24)

which correspond to resonances between the "focusing frequency" which a

0i i i
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FIGURE 5 The I = 0 stability plane. The shaded regions are unstable.

particle experiences and its cyclotron frequency in the toroidal field. Under

resonant conditions, there is a transfer of energy from longitudinal to transverse
motion and the adiabatic invariance of the magnetic moment in the toroidal field
is destroyed. During acceleration, if B. is increased and Bs is held fixed, the

operating point on Fig. 5 will move from right to left. The accelerator shoukI
operate in the left-most stable band to avoid crossing unstable bands. At
injection, therefore, m > b is required, which implies the need for a large number
of field periods. When space-charge effects are taken into account, one finds the
stronger requirement, m > 2b, to avoid envelope instabilities."

The momentum compaction factor for the I =0 configuration may be calcu-
lated, for small values of e and b/m, directly from Eq. (20). For n, = 0, the result
is

2x L I__) -(b/ M)2 ]  (25)
( Sp/ po) 1 2

which illustrates the helpful effect of the alternating gradient, as measured by e,

on the tolerance of the I= 0 device to momentum mismatch. When L or b/rn is

large. numerical integration of the orbit equations is required.

III. NUMERICAL CALCULATION OF SINGLE-PARTICLE
ORBITS

A computer code, which integrates the single-particle equations of motion, has
been utilized to study nonlinear aspects of the stellatron configuration. The code
solves the fully relativistic dynamical equations, without utilizing the paraxial
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approximation for the electron motion or an expansion in the particle displace-
* ment from a reference orbit. The applied fields in the code include toroidal

corrections to first order in the inverse aspect ratio. In addition, the code does not
assume the fiejd index to be 1/2.

The total magnetic field used by the code is the superposition of a conventional
betatron field Bb and a stellarator field B. The conventional betatron field is
given in Eq. (1). The stellarator field may be expressed as

0 B, = -V4, (26)

where 4, is the magnetic scalar potential for the stellarator field. To first order in
the inverse aspect ratio, 0, has been given by Danilkin4" as

• 1,(p.,Os)=-B9oos±+!' (x)sint[4-asI a

"-KEI [K2'I.(xo) - xK 1 t(xo) + x{]f,+(x) sin ((1 + 1h' - Is]

41at Ks)(xo)

" KE i (xo)-xoKt(xo) + X21 L (x) sin [(1-+ 1)4 -lIs], (27)

0 where s rOO, x = lap, a = 2ir/L, L is the helix pitch length, ic = ro, x = lap,,
p = pc is the location of (assumed) wall surface currents, and , K are the modified
Bessel functions. The coordinates, (p, 40, s) are defined in Fig. 3. More generally,
the field may be expressed as a superposition of fields of different -number. This
feature has not been included in the numerical model. In addition, beam image
forces may be included in the model, but have not been utilized for any of the

* results presented in this section. The wave number, k = m/ro, in the preceding
analytical model is equivalent to -Ia.

Figure 6 shows single-particle orbits obtained with this code. The figure is the
projection of the orbits onto the minor cross-section. The torus has a Im major
radius and 0.1 m minor radius. The vertical magnetic field is fixed at B,0 = 118 G,
corresponding to a matched particle (at the minor axis) with -y, = 7. The individual

• frames of Fig. 6 show a comparison of particle orbits in a conventional betatron, a
modified betatron, an I = 0 stellatror and an 1 = 2 stellatron. Each frame shows
two particle trajectories, one with positive mismatch and one with negative
mismatch. All the trajectories are initialized on the minor axis with momentum
parallel to the minor axis, and with various amounts of energy mismatch, A-,/-/o,
as shown under each frame. The conventional and modified betatron frames

• demonstrate that these devices cannot tolerate mismatch, Ay/ 0 ±3%. In fact,
using Eq. (12), we can estimate the tolerance of these devices to energy mismatch.

I 0
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PARTICLE ORBITS
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FIGURE 6 Particle orbits in conventional betatron, modified betatron, I = 0 stellatron. and 1:2 -

stellatron.

For n,(rbla)'<< 1/2, the allowed energy mismatch is given by

-5 I (28)
To 4 ro

For a/ro = 0.1, we obtain AI/yo22.5%, which is consistent with the figure. The
l= 0 and I = 2 stellatron configurations, on the other hand, can retain particles •
with more than A1y/-y0 = ±20% mismatch, as shown on the lower two frames of
Fig. 6.

Ay
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FIGURE 7 Energ-, bandwidth as a function of focusing strength e for the I = 0 stellatron. (n = 1/2).
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FIGURE 8 Energy bandwidth as a function of focusing strength e for the I = 2 stellatron. (n = 112).

The tolerance of the accelerator to mismatch between the average beam energy
and the vertical magnetic field can be described as a bandwidth of allowed
mismatch. For larger mismatch, the beam excursion from its reference orbit does

* not fit inside the accelerator aperture. The bandwidth, therefore, is essentially a
measure of the momentum compaction of the accelerator. Since a calculation of
the bandwidth involves particles with large Ay/yo that make large excursions from
the reference orbit, the analytical formalism of the preceding section is inade-
quate.

By launching particles as shown in Fig. 6, with various Ay/yo, the largest A'/vol
for which the particle is contained can be found. This bandwidth can be displayed
as a function of any parameter of the accelerator. Figures 7 and 8, for example,
show the bandwidth for the 6= 0 and 1 2 stellatrons as the amplitude of the

60%
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FIGURE 9 Energy bandwidth as a function of vertical field index n at a = 0.3 for the I = 0 ste~latron.
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FIGURE 10 Energy bandwidth as a function of vertical field index n at e =0.3 for the I= 2
stellatron.

strong focusing field is varied. In both devices, the bandwidth is *2.5% in the S
limit where e = 0, and exceeds 20% for e > 0.3. For I = 2, the quantity, jL, in the
preceding section is given by IL = embl2, where b = B,0 B o.

Figures 9 and 10 show the bandwidth for the I =0 and I = 2 stellatrons at
e = 0.3 as the vertical field index is varied. The results here demonstrate the.,
relative insensitivity of the stellatron configurations to the field index. The need to
maintain good uniformity in the field index for a conventional or modified
betatron drives the stored energy and cost for the vertical field coils (or leads to
the use of iron) in those accelerators. The stellatron configuration greatly relaxes
the need for such uniformity.

IV. ORBITAL RESONANCES IN THE STELLATRON 0

Until now, the applied fields in the stellatron have been assumed to be "perfect"
in the sense that only the fields described analytically above in Eqs. (1-3) are
present. In general, of course, a physical magnet system will have some imperfec-
tions leading to small field and focusing errors, which can be represented by
additional terms in the paraxial equations. Generally these small errors lead to a 0
small response but under certain conditions-when some rational number of
particle wavelengths fit around the machine-the particle orbits can be violently
disrupted. In this section, these resonance conditions are considered for the I = 0
and I = 2 stellatrons, and possible ways either to avoid them or to minimize their
effects are discussed. It must be said however, that there is no reason why such
resonances should be of any less concern in the modified betatron and stellatron 0
class of devices than they are in more conventional cyclic accelerators in which

S&

0L
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they are of course, of crucial importance in establishing an operating point.
* Though some of the high mode-number integer resonances might be successfully

passed through, there is considerable reason to believe that major beam disrup-
tions may occpr at low-order resonance crossings, if such are attempted. This
point is not often sufficiently stressed in the literature promoting the use of
devices similar to some of those employed in magnetic-confinement fusion
research to accelerate large currents to high energies.

This section will focus on the integer resonances, driven by the Fourier
components of an error in the vertical field, though others may also be important.
The tune shift due to space charge will also be neglected at first, to consider the
resonant response of single particles.

As in the previous section, the I = 2 case, for which the tunes may be explicitly
calculated [Eq. (10)], is considered first. For single-particle motion, the four
possible "betatron" frequencies are m/2 ± v, where v , satisfies the biquadratic,

v4 - (m 2 +mb+b 2+ 1)v 2 + J(. m E + mb -1) 2 - g2 = 0. (29)

The most general resonance condition is written

n,(mP) +n2(-v+ )+n3 ( )+n4 (-) = p, (30)

where nl,..., n4, p are all integers; this condition applies to all types of resonant
driving terms. Integer resonances occur when all n1 except one, nk, vanish and
p/nk = n is itself an integer, the Fourier mode number of the field error. When an
integer resonance occurs, the displacements which a particle undergoes on succes-
sive encounters with a field "bump" add in phase and the result can be loss of the
particle from the machine.

Figure 11 shows the integer resonance contours 1, 2,..., 10 in the b - A plane
for m = 20. (The n and m - n contours coincide.) The resonance contours are all
hyperbolae, from Eq. (29); the stability boundary coincides with the degenerate
case n = m/2. Ideally, an accelerator should be designed to avoid all resonance
contours, a design which may clearly be realized by holding b and i, fixed during
acceleration (neglecting the tune shift due to space charge, which may, in fact,
limit the current in this as in other cyclic devices). If b and . are allowed to
change during acceleration, it may be possible to pass through at least some of the
integer resonances, though this is only speculation based on a few computer
studies. The possibility of passing through resonances in the stellatron is discussed
further below.

The resonance situation in the bumpy torus is somewhat less straightforward to
analyze. In the presence of an error in the vertical field having Fourier mode
number k, a term of the form

(const) • exp 12ikO,,m + (ib/2m)(20, + E sin 20,)] (31)

is added to the right-hand side of Eq. (23), where the multiplicative constant is
proportional to the magnitude of the field error. One may employ the Green's
function constructed from the Floquet solutions to Eq. (23) to deduce that a

0w m m m m n l m illll|I
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secular term, proportional to 8,, will occur in the particular solution if

Cosi.(b+2k (2)--- -- = l(,

where tpt is the solution to the homogeneous equation satisfying #,t(0)= 1,
t¢i(0) = 0. Contours along which Eq. (32) is satisfied may be generated numeri-
cally for each k in the b m - E plane; an example is shown in Fig. 12. Note the
behavior of the k = 0 resonance line, which crosses other k-lines at b/m = 2- k/m
in the second stable band. A k = 0 field error is equivalent to a momentum error,
so one expects momentum compaction to be poor near the k = 0 contour. It is
unlikely, however, that one would "r to operate in the second stable band.

It is clear that the "stable" regions of Fig. 12 are in fact criss-crossed with
potentially dangerous resonance lines which must either be avoided or crossed
somehow during the course of an experiment. The operating point of an ac-
celerator may be held fixed in the plane, of course, by raising all fields in
synchronism, i.e., by keeping e = SBg/Bo and b = B#o/B,o fixed for all time. It is
worth considering the feasibility of crossing these resonances, however, since
increasing all the fields together has definite large costs in terms of field energy. It
might be desirable. for instance, to accelerate while keeping Bs, and 8Bo fixed in
time, allowing the tunes to change as b does. The immediate question is, "can
resonances be passed through without major disruption of the beam?" •

Since resonances occur when the number of betatron wavelengths completed in
one major revolution (i.e., the "tune") is an integer, half-integer, or other rational

= ,'-,=,,=~ m m m , 1 -,-m -- l m mmm
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number, a possible solution may consisting of setting constant tune by allowing
the particle reference orbit to have a variable major radius (i.e., to be noncircu-
lar). The FFAG accelerator works in this fashion, and achieves constant tunes by
forcing "self-similar" orbits during acceleration. A conventional betatron is the
special case where the self-similar orbits also have constant radius. With addition
of a toroidal field which varies as r - ' , however, there is no nonsynchronous field
solution with constant tune, as shown below.

The single-particle tunes (n, = 0) in a stellatron depend on the poloidal and
toroidal field numbers (I and m), which are assumed fixed, as well as on the field
ratios, b = Beo/.B.(, and e = B,o/Beo, at the reference orbit. In a modified betatron,
the tunes depend only on b. The Be and B, fields have the assumed dependence

B. = B.o(t) L (33a)
r

Br = Bzo(t) Lo . (33b)

At t = 0, the particle is assumed to be matched at r = r0 ; hence (for a relativistic
particle)

Mc i 2 -Y(O)
e B, 0(0)

During acceleration. the particle is allowed to move its matched radius to r(t),

Sm m mmmmtmmmm
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satisfying
r m)=ic2  3y(t)•

e li.(r(t), t)

2 r (35)

e Bo(t) L r J

or solving for r(t),

r(t) = ro[' c " (t) (36)

If b = constant at r = r(t) is required to fix the tune,

b Bo(t) r

eBot)t)-
-- 2 Et) = constant, (37)

nc 2 yf(t)

which implies that B90 must increase synchronously with y during acceleration. In
the stellatron, the requirement for fixed tunes is that both b and e be fixed
separately. This demonstration that b cannot be fixed if the toroidal field is 0
asynchronous with -y, therefore, applies to both the stellatron and the modified
betatron. It is therefore not possible to fix the tunes in a modified betatron or
stellatron with an asynchronous toroidal field that varies as r - '.

Another possibility for controlling the growth of single-particle resonances may
be to use nonlinear focusing fields to de-tune the resonance by making the tunes a%
function of the amplitude of the particle displacement. The Bessel functions which 0
describe the I= 0 or 1= 2 transverse fields, of course, already provide such a
nonlinearity. The use of I 3 fields in conjunction with a modified betatron or
I = 0, 2 stellatron provides a high-shear nonlinear field which may be of benefit for
the control of resonances.

Rapid acceleration of the beam may also provide a means of avoiding damage
due to resonances by rapidly accelerating through them. Since the betatron 0
wavelength depends on the particle energy, a stellatron with sufficient energy gain
per pass will traverse a resonance before the beam can respond. This possibility
has been addressed in the numerical calculation shown in Fig. 13. The first frame
shows a stable electron orbit with I= 49 and with no field error. In the next
frame, a 2% integer field error (n = 1) is superimposed on the stellatron fields.
and the unaccelerated electron trajectory is rapidly lost to the wall. The lower two
frames show the effects of high-gain acceleration through the resonance. At a gain
of 3 MeV/pass, the particle motion is essentially contained.

This result suggests that a high-gain stellatron accelerator, with rapidly varying
fields, may be desirable. Such a device will not only be beneficial for the control of
single-particle resonances, but also will have a shorter acceleration time than
conventional betatrons, and will therefore be less sensitive to several collective
instabilities. Resistive-wall instabilities, for example, are ineffective if the acceler-
ation time is E 100 g.sec.

I I I I
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To allow field penetration in a fast stellatron, the vessel will have to be slotted,
and acceleration will then occur primarily at the slots or gaps. The particles will
therefore'be unavoidably mismatched as they move between slots. The stellatron

* focusing can tolerate this mismatch, and is therefore compatible with this type of
device.

V. INJECTION

• Injection into a high-current cyclic accelerator is a challenge. The toroidal field
lines that contain the space charge of the beam must be crossed or perturbed to
get the beam in. A number of experiments have been carried out in similar
geometries using inductive charging,' 8"9

.
35 magnetic diverters," 4 7 and drift injec-

tion."8 A self-synchronous scheme, using the current in the cathode shank to
make a magnetic diverter, has been used to inject 50 percent of a 500-kV 20-kA

• 50-g.,sec beam into a racetrack torus."" These experiments by Gilad et al. and
Benford et al. involve injecting the beam into neutral gas. A 450-keV 16-kA
25-g.sec beam has been injected into a toroidal magnetic field in a hard vacuum 9

to obtain a trapped beam current of 300 A and a quiescent equilibrium for
20 gsec, which is approximately 3000 revolutions around the torus.

R experiments have been carried out in which the torus is filled using a
* plasma gun. The spatial plasma-density profile is controlled by adjusting the

direction of plasma injection or the timing between the gun firing and the

• , I
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application of the pulse to the cathode. The plasma makes contact with both the
cathode and the chamber wall. When the cathode is pulsed negatively, a double-
layer plasma sheath appears, and the electrons of the cathode plasma are
accelerated in the sheath and ejected into the plasma. With a 1.2-MV 80-I±sec
pulse, a current of 50 to 80 kA can be injected into the plasma. When the ring
radius is held constant, the 40-kA ring decays to approximately half of its value in
400 gsec. When the ring is compressed, the 25-kA ring current increases to
50 kA and is contained for about 4 msec. 5 7

Recently an axial pinch scheme has been proposed for injecting electrons across
magnetic field lines into the NRL modified betatron.52

None of the prior experience has established a widely accepted solution to the
injection problem. There are, nevertheless, several features of the stellatron field
configuration that may be important from the standpoint of designing an injection
scheme. The present discussion will be limited to the I = 2 stellatron.

The stellatron field has a separatrix within which the magnetic surfaces are
closed and beyond which field lines run to the outside world. Injection along
magnetic field line- can be used to place a beam just outside the separatrix. A
fast-rising coil may be used locally to slip the separatrix over the beam, thus
trapping it. Since the separatrix is a null field, it can be moved through the beam.

The rotational transform of the particle orbits due to the helical fields can be
utilized to move the beam electrons away from an internal injector. Electrons can
be forced to miss the injector for many revolutions of the accelerator. Figure 14
shows a beam injected at Ar = 8 cm, Az = 0 moving in the toroidal direction with
no transverse motion. The beam is injected with I = 10 kA, y =7 into fields,

a z ICM INJECTION
*A. am

II -X& • log

04- -10
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B90 = 5 kG, e = 0.5, B 0 = 118 G, n = 0.5. The analytical formalism developed in
Section 2 is used to track the beam center around the torus. The points marked
27r, 4wr, 6r,... on the figure represent the location of the beam center after
completing 1, 2, 3,... transits of the torus. Approximately nine revolutions
(200 Asec) are required to bring the beam electrons back to the vicinity of the
injector. The open circles. filled circles and x's on the figure represent the
injection of beams having 4,,/ 0=0.1% mismatch, and ±10% mismatch. The
injection dynamics are very insensitive to thiE mismatch. During the approxi-
mately 200ns required for the beam to return to the injector, the focusing fields
must be changed to trap the electrons. A small change of the helical field (e.g.,
variation of e) during injection may be effective in trapping the beam.

VI. DISCUSSION OF EARLIER WORK

During the course of this work, a number of people have pointed out related
unpublished work. In particular, a report on a plasma betatron that has tested a
field configuration similar to the I = 2 stellatron has been recently brought to our
attention. 3 The device consists of a betatron field together with toroidal, helical,
and multipole field capability to study plasma containment configurations. The
addition of a betatron field to the system is motivated by the production of
runaway electrons observ, d in the ORMAK tokamak. 5 Acceleration is obtained
by changing the flux in a central solenoid. The field at the equilibrium orbit from
this solenoid is nulled to zero by compensating coils. A separate set of programm-
able vertical-field coils is used to provide the equilibrium. One of the reasons
given for driving the vertical field coils separately is that the 2-to-1 flux rule is not

* valid for currents comparable to the Alfven current, 3 due to self-field effects.
The equilibrium beam production in a plasma betatron is complex. The

energetic beam is composed -f runaway 4 electrons. The current due to those
electrons that do not run away is generally an order of magnitude higher than the
runaways. The vertical field is set to provide an equilibrium for the plasma
currents. The interpretation of the limiting energy of the plasma betatron in terms

• of the work presented in this paper is as follows. The plasma currents provide a
rotational tranform that contains the high-energy particles. This transform ,:an be
converted into an effective energy bandwidth. As the energy of the particles
increases, the mismatch between the parallel energy and vertical field increases.
Since the vertical field must be programmed to maintain the plasma-current
equilibrium, this mismatch will grow until the beam orbit size exceeds the

* dimensions ef the chamber. Hence, the maximum energy in a plasma betatron will
be the bandwidth provided by the plasma current and the energy of the equilib-
rium orbit due to the vertical field. Runaway electrons with energies of a few
megavolts are not unusual in tokamaks, and a 1.5-MeV beam has been produced
in a plasma betatron. In the Livermore plasma-betatron experiment, the beam
energy is several hundred kilovolts and the beam current is about 10 A. The

• plasma current is I) kA.
The comolexit ot forming a beam from runaways makes the interpretation of
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the Livermore results ambiguous. With the helical field, the observed runaway
production is approximately 10 times more intense and occurs at a much lower
pressure, indicating that the helical field configuration confines single particles,
but that tn azimuthal current is necessary to continue the runaways in the absence
of a helical field. Without the helical field, the x-ray burst from the beam hitting
the wall occurs at approximately 200 lsec. With the helical field, the x-ray burst
occurs at 800 pLsec. The observed energy is only 200 keV, however, which is only
a fraction of what should be obtained if acceleration occurs throughout the pulse.

R. Moir has sent results from interesting work that used an E x B injector in a
racetrack geometry. 6 The trajectories of an I= 2 helical field combined with a
vertical field on one of the bends of a racetrack geometry is studied at low
energies. Resonant and nonresonant diffusion of very low current electron beams
has been studied. The beam makes 100 transits when the stellerator winding is on,
which is about a factor of 5 better than without the stellarator windings.

The stability plane for continuously rotated magnetic quadrupoles in a linear
transport system has been obtained previously.5 7 A stability plane similar to Fig. 4
results.

In a series of early experiments58 at the Naval Research Laboratory, D.C., de
Packh has combined a betatron and solenoidal lens fields. The excessive currents
required to raise the solenoid lens synchronously so as not to cross resonances
causes excessive heating. He has also tested a combination betatron and air-core
quadrupole system that can be programmed so that no resonance are crossed.
With a 55 keV injection voltage he has injected and accelerated a 1/2 amp beam
to 2 MeV.

J. D. Lawson has pointed out some early work on particle orbits in a betatro,
with a toroidal magnetic field.59 The coupling between the radial and vertical
betatron oscillations due to the toroidal field is examined. This work has been
motivated by some experiments in which the addition of an 8 gauss toroidal
magnetic field to a conventional betatron reduces the output by 75%, largely
because the injected electrons follow the toroidal field lines and intercepted the
injector structure after ore revolution.

In recent experiments at Cornell University60 an electron ring, confined in a
cold, partially ionized hydrogen plasma has been transported into a modified
betatron field configuration and accelerated. The energy of the beam is increased
from 1. 1 to 3.3 MeV. Although there is no direct evidence of instabilities, the ring
current decreases from 3 kA to 1.5 kA during the acceleration.

Recently, a periodic magnetic-focusing system for a high-current cyclic system
has been suggested.6 The toroidal field consists of a series of magnetic cusps. The
paraxial equation for this configuration may be obtained from Eq. (20) taking
b -+ - and e - 0 with be fixed. Inje-tion can take place on the open field lines
and the nonlinear focusing of the cusp may give a sufficient tune shift to detune
the single-particle resonances.

VII. SUMMARY

The addition of continuous strong focusing fields to a betatron or modified
betatron leads to a new configuration that has a large tolerance to mismatch

0
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between the particle energy and the vertical magnetic field, thereby relaxing both
mechanical and electrical design requirements on the accelerator and the injector.
The allowed mismatch bandwidth obtained by strong focusing is especially
attractive forhigh-current accelerators, and is compatible with operation at high
energy gain per pass.

Strong focusing also offers the advantage of introducing a threshold, 7Tr, for the
onset of the negative mass instability. For - <yT, there is no negative-mass
instability. The threshold is Yr 13 for typical stellatron parameters. ' - The
addition of stellarator windings to a betatron has not yet been analyzed in detail
for its effect on collective instabilities. Other issues which are as yet unresolved
include the evaluation of methods for avoiding orbital resonances and the
demonstration of a beam injection technique.

The strong focusing associated with the stellatron allows a configuration to be
designed with n, >> 1/2 at injection which will operate without passing through a
disruptive diamagnetic-to-paramagnetic equilibrium transition26' 2 7 during acceler-
ation. The modified betatron, on the other hand, suffers an instantaneous loss of
momentum compaction as n, passes through the value, 1/2, during acceleration.

Of the various 1-number stellatrons, only the I = 0 and I= 2 configurations
provide a finite transverse field gradient at the beam axis. Both configurations
allow a large mismatch between the average beam energy and the equilibrium
beam energy for the applied vertical field. Both are also relatively insensitive to
the vertical field index. The I = 0 system appears easier to construct, but stability
during acceleration requires the use of a large number of field periods, i.e. m 2 b.
The I= 2 configuration, on the other hand, requires a more complicated (quad-
rupole) field, but does not require a large number of field periods for stable
operation; the field can be generated using modular coils.62" 63

An objective of this study has been to describe a multi-kiloampere cyclic
electron accelerator concept which is compatible with injectors based on Marx
pulseline technology. Such injectors are limited to electron energy of a few MeV,
and the accelerator must therefore tolerate significant beam self-fields at injec-
tion. These fields can lead to substantial beam emittance as well as beam
mismatch with the vertical magnetic field. In addition, the Marx pulseline technol-
ogy itself is limited in the voltage ripple and the shot-to-shot voltage reproducibil-
ity that can be achieved at reasonable cost. The accelerator must be able to
tolerate such uncertainties in the injected beam parameters on each shot. The
stellatron configurations described here have a large tolerance both to beam
emittance and to beam mismatch, which makes this concept attractive for handl-
ing high currents and for mating to a Marx pulseline injector.

As this paper was being completed, encouraging experimental results from a
group at the University of California at Irvine were reported to us. 6 6 A 200-A
beam has been accelerated to 2 MeV in a small I = 2 stellatron device; smaller
currents have been accelerated to 4 MeV in the same experiment.
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APPENDIX

This Appendix discusses the method of averaging Eqs. (6a-6c) over particle initial
conditions so as to find separate equations for the particle position (r1 (t), z,(t))-
"Lagrangian" variables, dependent on the individual particle's initial position and
momentum, and for the location of the beam center, (Ar(O, t),Az(@, t) -
"Eulerian" or field variables dependent only on time t and the observation point
0. The radial coordinate is treated here; identical expressions hold for z.

The distribution function may be defined in complete generality in "Klimon-
tovich" form6 "

f(r, 0, z, p Pe, P.; t)= Jd3r(o) d ° 3 °P 0 )(r, p(o))

•8(3)(r~i( ) - O o), t))

.80)3 (P_ - V11, p(0), t)), (A- 1)

where r"') and p")l are the initial position and momentum of a particle, i and p are 0
the solutions to the equations of motion for a particle of given initial position and
momentum, and the integral extends over all initial conditions. At a given
azimuth 0, then

Sr dr dz d3 p(r- ro)f(r, 0, z, p. p9, p ; tAr(0, t)=

f r dr dz d3 pf(r, 0, z, p, Pe, p ; 0

J d3 r(o) d3 p (°T0 f0 (r(, °JO)rt 8(0 - 0)

f d3r(O) d3p (Of(r(0 ), p(o)) 8(0 -0)

(ri), (A-2)

where rt -r,, and the arguments of r, and 0 have been suppressed. Next
consider the quamtity (i') and relate it to derivatives of Ar(8, t). Defining for
convenience the operator ? as

f4b f d3 r(°) d 3 p(0 f('(r(), p(0 )o(r 0), p(O))

0
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one finds

at( -8 (8 - i)

Y_ . rtS(O -)-, r, a So -)ata
at at

ata- ~ ~ 0 (0- +e 0"r (6
a a
at . ao( - r, (A-3)

0~~~ - ~--- 80-0a r ,5(0- 0)]+ a 8 (0 - 0)]
• =0-;a L f. +(- + L .S(0 -+

r 1(0 0) ao
[ T. a (o - e)I

I•To this point, the expression for (i) is formally exact. To make further progress
the linearization approximation is utilized in order to make the replacement
00o - =flo. To linear order, then, from (A-3)

)O=( + 0.0 -)Ar(O, t) (A-4)

* Similarly one may show, to the same order of approximation,

(t =(t+f,.o- -)Ar(Ot). (A-5)(t a
Equations (A-4, 5) and the corresponding equations for (±,) and (i,) are used in
the text to obtain (7a, b) from (6a, b).0

0

0



Beam stability In a stellatron
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Collective effects in the! = 2 stellatron [Phys. Rev. Lett. 50, 507 (1983) 1, a high-current electron
accelerator, are studied. A thin-beam model is employed, and only long-wavelength, low.
frequency modes are considered. The eigenvalue problem is formulated in general and solved
analytically in the imooth approximation; comparison with a numerical solution of the
eigenvalue problem is excellent. It is found that the dispersion relation in the smooth
approximation is identical in form to that for the modified betatron, under a simple substitution.
An analytical expression for the transition energy, obtained earlier by a simple dynamical
argument, is confirmed. The stellarator field is found to reduce the growth rate of the negative
mass instability.

I. INTRODUCTION effect on beam stability, is treated simply: the beam is as-
The I = 2 stellatron, a betatron with an added I = 2 stel- sumed to be contained in a perfectly conducting toroidal

larator winding, was originally proposed' in order to inm- chamber. Only the longitudinal, or negative mass mode is
prove the tolerance of a betatron or modified betatron2 to a unstable in these circumstances. Several comments are made
mismatch between the average beam energy and the vertical below, however, regarding the effects of walls of arbitrary

magnetic field. Such a tolerance would be a desirable feature impedance on both longitudinal and transverse modes.
of any high-current accelerator, since injectors inevitably Under the above approximations we have the following
produce a beam with measurable energy spread as well as a findings to present: (1) the eigenvalue problem governing
variable average energy. Though the original analysis in- the longitudinal and transverse modes of a beam in a stella-
cluded space-charge effects in a simple, non-self-consistent tron; (2) a dispersion relation, obtained from an approxi-
way, the argument for improved momentum compaction mate solution to the eigenvalue problem, which is identical
can be based on single particle orbit considerations alone. in form to that obtained for the modified betatron2 with the

Treatment of space-charge effects in the stellatron is redefinitionofacertain symbol- (3) confirmation ofanana-
complicated by the lack of symmetry in the fields. Self-con- lyrical expression,' obtained by a simple dynamical argu-
sistent, monoenergetic, KV-like equilibria can be construct- ment, for the so-called transition energy, below which the

ed,4 however, and these give explicit relations among the longitudinal mode is stable (in the absence of dissipative
beam radii (the beam is elliptical, in general), emittance, effects); (4) a quite favorable numerical comparison
current, energy, and externally applied fields; the shifts in between the solution to the eigenvalue problem of (1) and
the betatron frequencies due to space charge are also ob- the dispersion relation of (2) for the longitudinal mode.

tained from these equilibrium studies. This paper is organized as follows. Section II describes
In the present paper the stability of a beam confined in a the derivation of the linearized equations of motion, assum-

stellatron is considered. This work was motivated, in part, by ing the applied fields are given near the axis of the torus.

certain experimental results on the 1 = 2 stellatron at the Section III outlines the derivation of the first-order charge

University of California at Irvine.' Though beam currents and current densities in terms of the single particle variables
have been increased in that experiment by the addition of the using a summation over initial conditions. In Sec. IV the
I = 2 windings, currents are still not as large as one might approximate solution to Maxwell's equations is obtained,
expect from the amount of injected charge. An instability of and the total first-order fields to be used in the equations of
some kind may be responsible for the current loss. An at- motion are derived. In Sec. V the eigenvalue problem is for-
tempt to discover possible current limiting mechanisms in mulated and is shown to reproduce the modified betatron
the stellatron initiated the work presented here. dispersion relation in the absence of the twisted quadrupole

The present stability calculation makes the following field. An approximate solution based on a two-time scale
approximations: All first-order fields are treated in the long- analysis is presented and some comments are made on the
wavelength (A>a - minor radius of toroidal chamber), form of the resulting dispersion relation. Finally, in Sec. VI,
low-frequency (wa.c/a) limit; toroidal corrections to the a numerical solution to the full eigenvalue problem is pre-

first-order fields are neglected. We note in particular that the sented and compared to results from the dispersion relation
long-wavelength approximation may omit the potentially in- 0 Sec. V.
teresting caseA - 21r/m, where r, is the major radius of the Section VII summarizes these results and makes a few

torus and m is the number of stellarator field periods around additional remarks.
the device. The beam is treated as a structureless, thin.
threadlike charge distribution so that the effects of betatron II. EQUATIONS OF MOTION
oscillations and energy spread on the equilibrium are ig- We shall use a standard (r, 9, z) cylindrical coordinate
nored, the magnitude of these effects can be roughly estimat- system. In the unperturbed state we have a thin beam en-
ed. however.' The beam vivironment, which has a critical closed in a perfectly conducting torus of major radius ro and
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minor radius a. The position of an electron which, in the 6J(r, t)
absence of ac excitation would be at (ro, o(t), 0) is, in the
presence of the excitation, at k 0PoP + _ 1 r p . +"LP° - Xre° ")0 P

r =(to + + 7 +0 4- , +;) O-

where , , andy, known as polarization variables,"' 1 1" are The perturbed line-charge density, which will be needed be.
functions of 8o and t and where the unit vectors in ( I ) refer low, is obtained by integrating (5) over the beam cross sec-
to the unperturbed position of the particle at time t. The tion:
applied fields seen by a partile at (P. + ri, 0, z,) are taken to
be 6A = A0  ~ ~ ~ ) 7B ' : -- - nB z,/r + k,B, (z, cos m 8 - r, sin m 8), (2a) FO o ,(7)

where A0 is the zero-order line-charge density. In (7) the

B-..Bo, (2b) first term is due to radial expansion of the ring while the

B '__B. (I - nr,/ro) + k,B, (r, cos mO + z, sin mO), second term is due to azimuthal bunching of charge.

(2c)
IV. SOLUTION TO MAXWELL'S EQUATIONS

where B , Bo, and kB, are constants, n is the betatron As S cIbe in thE tr UTION

field index, and m is an integer, the number of quadrupole As described in the Introduction we will cofefine our
field periods around the device. If the rf fields (as yet un- attention to the long-wavelength, Iow-frequency modes. In
known) caused by the perturbation are denoted by a super- particular we shall assume

script, the linearized equations of motion become a 4 ly,/kil j, (8)
where yr, is the relativistic factor corresponding to the

0 - +pcosmoo)4- ,o wave-phase velocity and k, is the wavenumber in the direc-

- loo +/pW0 sin mOy tion parallel to the beam velocity. This inequality allows us

(elm. yo) (E~ (6aB ",to replace the wave operator V2 + aw2/c 2 by just V Ad so to
, (3a) calculate transverse fields from statics. The lon.,itudinal

i+aij=4 - (e/m o) E , (3b) field, E ",), required in (3b), is then calculated from Far-
x + 02 (n -A cos mOo)X + fleo +pa sin mO:g aday's law, in this approximation.

= -- o) (E(rn -B,B ((3c) tio It is convenient to think of a general density perturba-
,e/), (E) tion as a superposition of two types: (I) the beam does not

move transversely but suffers a change in density; and (2)
where a dot denotes a /at + ,a 8aoO, , = eB,,lm.y,C the beam retains its zero-order density but moves transverse-
fl.o = eB,,o/m,yv0c, - e and m, are the charge and ms of ly. Even though we will be mainly interested in the longitudi-
the electron, 0o and yo are the usual relativistic factors, and nal mode, we include perturbations of type (2), since for
I an kPrB,/B., is a dimensionless quadrupole strength. In certain transverse modes the quasistatic approximation still
the absence of rf fields we integrate (3b) once and substitute holds and these are not difficult to retain in the analysis. The
in (3a) to obtain the usual equations' for betatron oscill transverse modes, however, will be stable in the absence of
tions. To complete the calculation it is only necessary to wall resistivity or other real impedance.
obtain expressions for the rf fields in terms of 4, 7, and X. In solving Maxwell's equations for either type of pertur-

bations one encounters a difficulty in treating an infinitesi-
mally thin beam, since such a beam produces infinite fields

III. SOURCES FOR MAXWELL'S EQUATIONS on its surface. We will, consequently, in this section think of
the beam as having some small, but finite radius rF. Our

To express the first-order charge and current densities results will depend only very weakly on the value of r,.
in terms of the polarization variables we begin with the for- A perturbation of type (I) is represented by the middle
mal Klimontovich expression for the total charge density at term of (5) and the middle term of the 9 component of (6).
the point r at time t Calculation of the transverse fields for such a perturbation,

SP(for perfectly conducting wall boundary conditions is ele-
p(r, t) = -e dPodoF(o~ ,,)O8(r- ), (4) mentary. Use of the transverse fields in Faradays's law gives

where F is a distribution of zero-order positions and mo- E , at the center of the beam as
menta and F is the actual (zero + first-order) trajectory + 20 (1 ,n a ( 2  

P39

F = to + ,. + bo + Xfo. Expanding the delta function in T( + "o1) + C'
(4), one finds for the first-order charge density0 i d C 2

where we have assumed an e - ' time dependence and haveSP(rrt) = La , 17 , ,I2P (5) retained only the second term of (7), in the spirit of the

r r r de dz cylindrical approximation. All transverse fields vanish at the
where, 77and X are evaluated at O and t, and po is the zero- center of the beam for perturbation type ( I ).
order density. A similar treatment for the current density The dipole perturbation, type (2), produces nonzero
yields transverse rf electric and magnetic fields at the beam center
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but no additional contribution to (0) since transverse mo- where V- 2J'(v/Yo)(I + lnat )/h, Yi;A -2 0)22
tionofthebeamsimplycompresses, but does not change, the (12c 2), n=Z -l, y-l- -l ,, .n and =n n,,.
flux between the beam center and the wall. The transverse Equation (15) agrees with the result of Ref. 7, where the
fields due to this perturbation, represented by the first and dispersion relation for the modified betatron is obtained un-
third terms of (5) and the first and third terms of the 6 der assumptions simila to those employed here. The solu-
component of (6), are straightforward to find, again using tions to (15) are thoroughly analyzed, in the approximation
statics r,, = ro, in Ref. 7, where resistive wall effects are also con-

E.. = - 21po( I rf/a2), (10a) sidered, the effects of a more general wall impedance are
examined in Ref. 6.

2 1-la2), (l0b) Let us now return to the eigenvalue problem for the case
B,. =,E,, (10c) a # 0. For long-wavelength modes, one expects each of 4, 17,

SB,. = (10d) andX to becomposed of amain, slowly varying part and a
much smaller, rapidly oscillating piece, this latter part due to

The fields in (10a)-(10d), however, are not the only the rapidly oscillating quadrupole focusing. This suggests
first-order fields. There is another contribution as may be that we write t = 4, + 4f , and similarly for 17 and X, where
seen from the following argument: Any field component the subscripts denote slow and fast variation. It should be
F(x) may be written F0(x) + F x), where F is the zero- said here that we anticipate that Imjo-1 in typical applica-
order field and F, is the first-order field due to the first-order tions; the UC Irvine experiment, for example, uses m = 12.
sources defined at the observation point x. In the equations Substituting for 4, 17, andX in ( 13a)-( 13c) and performing
of motion all fields are evaluated at the location of the beam an average over the fast scale, 21r/m, gives the equations
x0 + x. Consequently, the correct first-order fields to be D 2 + (I _ - y )t+ 1 (O ,
used in (3a)-(3c) are sums of the form

-11)b D,.-DX, +u(sinmx) =0, (16a)
2 x +F,(xo). (11) a2ax No. 01 -a) d---2T77,

vhere F, is given by (10). We find then that

E(d- 2(A0/a 2 )g, (12a) - 2i U--7 (l + a )j, +D , =0, (16b)
E( = 2(Aola2)X, 12b) d6while (1c) and (ld) still hold. D ', + (n - nb )X, -A (co mft, ) +b D,wh/e (sin mOf/) = 0, (16c)

where the angular brackets, (..),denote an average over the
V. THE EIGENVALUE PROBLEM fast scale, and we have assumed (t,) - t,, (4/)

Substitution of the fields in (9), (12a), (12b), (10c), =0- (4') = (g"),etc. Ifwenowsubtract (16a)-(16c)
and (10d) in the linearized equations (3a)-(3c) gives from the unaveraged equations (13a)-( 13c), use 4, I4<, I,
D2 . + (1 - n-n, - o +/i cos mO)4 - o DI - b DX keep all derivatives acting on fast quantities, and ignore

quantities of the form cos rnOm - (cos mg4), we arrive
+,a sin mex = 0, (13a) at equations for the fast variables:

a2 _ 822 (I +_ a# -)/17c+s6_
(I -a) 717 - 2i 7 - i( qa80 )7+D4b -y 4 * cos m ,-jusin m6',

(13b) 
(17a)D 2X + ( n - n. -/ l cos mO)/F + b D +u l sin mOt =f 0, a 2 a

#(13s) LX, +b- ,Sf= -1Asinmg, +AtcosmOX,,
(13c) d6 2  do

(17b)
whereD = d/0 - iU, Z=; /wo, n,, = 2vro/(oa2 ), v which are easily solved to give
is Budker's parameter, v= - eAol/m,c 2, a = 2v( + Ina = [ u/m (m + b) (cos mOf, + sin mO,9, (18a)
rb)/(ro ), b = Bo/Bo, and we have dropped the sub. -cosn6r,. (18b)
script 0 on 6. If we define 0 to be a column vector with
components t, t', 17, 17', , ,r', where a prime denotes 9,a, Finally, substitution of ( 18a) and (18b) into ( 16a)-( 16c),
the eigenvalue condition determining 5 is using (cos2 m8) = (sin' mO) = , gives the equations for

the slow components:

In the case/p = 0 the condition for (14) to be satisfied is D%4 +{l - n -n, + (m 2 /m(m+b)] -}

most easily obtained by assuming for 0 the dependence e", - A D17, - b D', = 0, (19a)
* where I is an integer, the azimuthal mode number. For this d a -2

case (13) reducestotheevaluationofa 3 X 3determinant for (I -a) -- 71, - 2i- w2(1 + a,)7,
the eigenvalue condition, with the result + Df, = , (19b)

+ (i2_,)(i $,8 2 fi =, (5 D2X, +{(n - n.+l[2/rn(m +b)]X. + bD , = 0.
(7 (1 r__________ , (15)
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Equations (19a)-(19c) are differential equations with con- succinctly as follows: One must find a such that (at least)
stant coefficients and are in fact precisely of the form of one of the eigenvalues of 4(8,.) is one of the mp roots of
(13a)-(13) iffu is set to zero in 13a)-(13c) and ifno is unity.
replaced by A FORTRAN program has been written to solve this

n1 -- n- [ .11m(m + b) (20) problem. Starting with an initial guess for Z, the matrix
It is +een that tef(8,,) is evaluated and its eigenvalues computed; an adjust-
It is seen that the focusing effect of the twisted quadru- ment to Z is then made using a simple secant method. Con-

pole has been replaced by a smoothed, effective focusing vergence typically takes three or four iterations.
term. It follows, consequeptly, from ( 9a)-(19c) that the For comparison purposes the smooth approximation

dispersion relation for the stellatron for long-wavelength dispersion relation (15), (20) was also solved numerically
modes is just that for the modified betatron, Eq. (15), under using the same first guess. This was a matter of finding the
the replacement (20). This is the basic result of this paper. appropriate root of a sixth-order polynomial [the approxi-

A further result may be obtained by examination of mations employed to obtain (21) were not made here) and is
(15). IfweapproximateA 1, and assume <v<, v.2 for very fast computationally. In fact the data for the plots
the longitudinal mode, then solving the resulting quadratic shown below, of the longitudinal mode growth rate versus
equation gives the result that the longitudinal mode is stable various parameters, originally took -40 min each to gener-
below a transition energy given by ate on a VAX 11-780 by the first method. Each took less than

y" = v, = {I - n - n. + [M 2/m(m + b) ] }"12, (21) 3 sec using the smooth approximation dispersion relation.

which agrees with an earlier estimate' For all cases tried, the two methods agree to at least three
For the special case" m + b - 0, the analysis leading to significant figures and give plots indistinguishable on the

(20) and (21 ) no longer applies. In this case one may show, scales used below.

by reconsideration of ( 17a) and (17b) if, that the stellatron Three plots are shown here. All were made using values

dispersion relation is again (15) but now under the replace- typical of the device at UC Irvine, i.e., a/ro = 0.1, rb/a
ment bil -. b - M2/bI. A transition energy, as defined in = 0.2, n = 0.5, m = 12, and b - 40. In the first plot, Fig. 1,
(2 1 ), no longer exists; one is always above transition. Ir (Z) is plotted versus current for a beam energy of 2 MeV *

and /s = 50. The dependence follows quite closely to the

classical square root law. In Fig. 2, the growth rate is plotted

VI. NUMERICAL ANALYSIS versus energy for a current of 200 A and/ = 50. The value
of the transition energy predicted by (21 ) is 0.52 MeV and

In order to test the analysis leading to the dispersion is seen to agree quite well with the numerical value. Finally
relation described in the previous section, a numerical solu- in Fig. 3 the growth rate is plotted versus AS for a beam *
tion to the eigenvalue problem for (13a)-( 13c) has been energy of 2 MeV and a beam current of 200 A. The stabiliz.
carried out. The solution is based on the following construc- ing effect of the quadrupole field can be seen quite clearly.
tion. We define a 6 x 6 matrix %P (0) which has, as columns, This is to be expected of any field which inhibits transverse
solution vectors 0 satisfying ( 13a)-( 13c). Furthermore, we motion. In all cases shown Re(Z) = 1.
define %P to satisfy the initial condition %P (0) = , the identi-
ty matrix. Since the coefficients in ( 13a)-( I3c) are periodic VII. DISCUSSION AND SUMMARY
with period 2m'/m 6 ,,, it follows that P(6 +- 6,,,) must
also be a solution to (13) and so the columns of ( + 0, ) The features and various limiting cases of the dispersion
mstea be expessible(13) anso tie coumna of th (0 +relation for the modified betatron have been extensively dis-must each be expressible as a linear combination of the C'o-

lumns of T'O). Considering the initial condition on TI, we
have that 2.OE.02-

qV (0 + 0,) q(0)%p (0,), (22) •

from which it follows, by induction 1.6E-02-

'I (0 + kO,,,) = qV(0)4k(0,,,) (23)

for any non-negative integer k. 1.2E-0n
Suppose we find the matrix U which diagonalizes cc

%V(0,)U= UA, (24) S.OE-03 /

where A is a diagonal matrix, containing the eigenvalues of o
'I'(0,,). The columns of %P(8) U are then the Floquet solu- 40.o03

tions, satisfying

q/(8+9,,)U=T(O)UA. (25) 0.0E+00 ... I I

It follows from (25), then, that 0. 200. 400. 600. a. 1000.
I (AMPERES)

+'(8 + 21r) U = '10 (0) UAm . (26) FIG. i. Noriizedp bratet for th. Ioatudinal mode versus current.

The eigenvalue problem for ( I 3a)-( 13c) may now be stated Bems e. W is 2 MeV. Hm - 50. (Otbw patmeten pven ul text.)
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* 2.0-02 2.011

1.6E-02 1.61E42

II

S1.2E-02 i 1.21E02

Xz

4.0E-03 4.0E-03

O.OE+00 . .... O.OE+00 .. A.... . .. ,
0. 1. 2. 3. 4. S. 0. 20. 40. 60. s0. 100.

EAM ENERGY (MEV) MU

FIG. 2. Normalized growth rate for the longitudinal mode versus ener. FIG. 3. Normalized growth rate for the lonitudinal mode versus quadru.
Beam current is 200 A. Here u - 50. The theoretical value for the transi- pole strength. Bam enefrf is 2 MeV; bem current is 200 A.
tion energy is 0.52 MeV.

cussed in Refs. 6 and 7. Toroidal corrections and a careful particle simulations for strong interactions of the beam with
comparison with the results of particle simulations have certain electomagnec modes of the toroidal cavity, under
been carried out by Godfrey and Hughes. 12 We have shown certain conditions. These interations are an important topic
that, under the substitution (20), virtually all of the analyses for further study.
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It is generally difficult to diagnose the energy of an electron beam propagating in a focusing
channel. Here we suggest observation of the Doppler-shifted radiation due to the electrons'
betatron motion in the channel as a sensitive, nonperturbing diagnostic. Sample spectra have
been calculated for a specific type of channel used in a cyclic electron accelerator and their

* features are discussed.

I. INTRODUCTION fields near the null line (taken to be a circle of radius ro) of

For some recently proposed high-current electron ac- the quadrupole are, in cylindrical coordinates (rz),
celerators it would be desirable to have a passive diagnostic B,= - nBoy + k,, Br 0 (y cos k~s - x sin k~s), (la)
of the various beam parameters. Beam current measure-
ments may be made by a variety of means, but passive mea-
surements of beam density and energy are less easy. One B, =B.0 (1 - nx) + kBro(x cos k~s +y sin k~s),
might consider observation of ordinary synchrotron radi-. (1c)
ation in cyclic devices as an energy diagnostic, but this is where B.o, B,, and B*o are constants, n is the betatron field
effective only at moderately high energies; at the lower ener- index, k. is 21r/(period of quadrupole twist), and x and y
gies attained so far in these devices the metallic chamber acts are normalized radial and vertical displacements, respective-
very effectively as a shield for this long wavelength radiation. ly:x = (r - ro)/roy = Z/ro. If an electron has energy mc2yo
Higher-frequency radiation, significantly above cutoffof the then its first-order equations of motion are
beam tube, is emitted by the electroi. as they execute beta-
tron oscillations. This radiation is Doppler shifted in the X. + (I - n)/Wr + k ' cos kslx

* forward direction by a factor proportional to the square of - -yk 2 sin ks + kby', (2a)
the energy (for#-. 1); hence, it is a good candidate for an y' + [n/1r -k cosk=s]y= -xk sin ks-kbx',(2b)
energy diagnostic.

This paper presents an analysis of the radiation from where k' = k.B,/roB,,,k, Beo/ro B,, and a prime de-
betatron oscillations for a particular device, the stellatron, notes d Ids. Note that in the cylindrical limit r, - oo, k., k ,
(a strong-focused betatron), one of which has been built and and k, all remain fixed. Only the focusing terms due to cur-

• operated at the University of California at Irvine.2 We will, vature in the vertical field, represented by the 1 - n and n
however, make a number of general comments applicable to terms in (2a) and (2b), vanish.
many similar machines. The Floquet solutions of (2a) and (2b) generally con-

This paper is organized as follows: In Sec. II, we de- tain an infinite number of terms but in the special case n = ,
scribe the magnetic field configuration of the stellatron, a symmetry exists in (2a) and (2b) and one may find the
write down the paraxial equations of motion, and write general solution as a sum cf four oscillating terms:

• down their solution, giving the expressions for the four beta- x + iy e'l / 2 (A .ek$ + o'A * e -
tron frequencies; this section is brief since the results are
given elsewhere." 3 It is mainly included to introduce some + A _e'k-' + rA *_ e- ek_) (3)
notation. Next, we examine the standard expression4 for ra- where
diated intensity for prescribed particle motion, and make 1 + (k. + k, )2
some comments on what one expects to observe. We then k2 = + k +  ( + )

• give some specific examples of spectra and discuss their fea- 2 ro 4 4

tures, including the effect of"geometric line broadening," an [( + ok ,)(k k,2k4 (3a)
inhomogeneous broadening mechanism due to orbit curva- ±- 4
ture. The final section draws conclusions and makes a few and
additional remarks.

,r [ k,/(k - (k + kb )/2)
2  112r,- k 2 /41.

II. PARTICLE ORBITS IN THE STELLATRON In (3) the complex constants A . depend on the four initial

The stellatron is a betatron with superposed strong fo- conditions. The solution (3) is stable if
cusing in the form of an I = 2 stellarator (twisted quadru- I~k 2 + kkb - l/r1, > 12k 1, which sets the limit on the
pole) field; we take the accelerator to be in the form of a quadrupole strength.
torus of major radius r, and a minor radius a. The magnetic In the experimentally interesting limit of large k, (large
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toroidal field) the betatron frequencies take the forms ity goc, executing a betatron oscillation at a frequency o.

w,, (ik +k . )60c = (kb + k. )60c, (4a) about the axis. An observer stationed on the axis, with the
electron moving toward him, will see radiation at the

W2---- - k . )#,c= - kbGoC, (4b) Doppler-shifted value w. /(1 -&o). If the observer is locat-

w3 k= (k + k_)oczkoc, (4c) ed at some angle 0 off the axis of the cylinder, he sees a
Wo4 -= (4k. - k_- )floC =0c/ (2 ko ). (4d) smaller Doppler shift w,/(1 -fi6 cos 0). Therefore, a de-

tector centered on the axis with a small finite angular accep-
Note that kbgfoc is just the electron cyclotron frequency in tance A0 will see a spread in radiation frequencies of the
the toroidal field, eBeo/mocc Of the four modes, only the order of
first two typically emit radiation at frequencies significantly fi(A0) 2 /J2(1 -,6o) 1 - 0, + #0 (AO)'/2
above the beam tube cutoff, - c/a.

In the opposite limit kb -0 (no longitudinal magnetic In addition, as the observer moves off the axis he begins to

field), we obtain the forms of the betatron frequencies in the see energy radiated in harmonics of the Doppler-shifted fun- 0
cylindrical limit as3  damental.

This "geometric line broadening" is illustrated in Fig. 1
[k,/2± (kZ :± k ) /2]foC. (5) and 2 for an electron moving along the axis of a cylinder in

Of course since the betatron frequencies depend on which focusing is provided by both a twisted quadrupole and
many parameters (magnetic fields, field gradients, etc.) one longitudinal magnetic fields. Figure I shows the spectrum as
may consider a measurement of a betatron frequency as a seen by an observer located exactly on the cylinder axis (i.e., 0
measurement of any of these parameters; most of these, how- 0 = A9 = 0). Three peaks are seen; a fourth is actually pres-
ever, are most easily and directly measured in other ways. ent but at indistinguishable amplitude on this scale. The four
An exception is a measurement of beam density. Although peaks precisely correspond to the four Doppler-shifted beta-
we have not included beam self-field effects in our evaluation tron frequencies W,,...,o, 4 for this case. The finite line widths
of the betatron frequencies one may do so'; if this is done, are solely due to the fact that we numerically integrate (6)
however, one finds that only the lowest betatron frequency is only over a finite time; the widths are seen to shrink as we
at all sensitive to beam density for typical values of other increase the time of integration. For a real cylinder of finite
parameters. This lowest-frequency mode is typically far be- length, of course, the radiated linewidth is nonzero. No har-
low cutoff of the beam tube and so is most efficiently ob- monics of the fundamentals are present.
served by simple electrostatic probes. Figure 2 shows the result of an integration of (6) over an

angular range y0 from 0 to 0.6 (i.e., A - 0.6/y = 0.06).
I1. RADIATION SPECTRA Line broadening and the appearance of energy radiated in 0

The energy radiated per unit solid angle per unit fre' harmonics is evident in this case. The fundamental peaks,
quency by a single electron moving along a specified trajec- however, are still identifiable.
qeny bin glreespace electrn m i a g aThe situation in a torus is such that it automatically
tory in free space is given by 4  presents any observer with a range of Doppler-shifted fre-

dI( c) = 1 ( eo&~ dt h× (h x P)et - _r., /c quencies, as well as with many harmonics of the betatron and
dOl c k21r J

(6)

where h is a unit vector pointing from the electron to a dis-
tant observer and the integral extends over times during wI
which 13 is changing. Equation (16) is applicable to the radi-
ation from electron orbits in the stellatron for frequencies far
above the beam pipe cutoff; it also assumes that collective
effects--electron bunching on a scale of a radiation wave-
length-may be neglected. In order to calculate the spec-
trum of radiation emitted by an electron circulating in the
stellatron, it is possible, if rather tedious, to substitute (3) Iinto (6), expand the exponentials in terms of Bessel func- -

tions, and perform the integral over time. The result one sees
involves spectral peaks at the frequencies

no00 + n[a,- + n2c 2 + n3W3 + n4Nw4 , (7)

where w, is the basic "cyclotron" frequency = f3oclr o and
n 0 .... M4 are integers. The amplitude of the radiation for any
giv.i set of n's depends on the energy of the electron and on 0 L.
its initial conditions. 00 12 2.4 3.6 48 so 72 84.1011

Rather than write out the explicit but nontransparent FREQUENCY (RAO/SEC)

mathematical results for the integral in (6), let us discuss FIG. 1. Radiation emitted in forward direction by an electron movmg along

what one expects to see. Consider, first of all, a particle mov- a cylindrical focusing channel. y = 10, k, = 0. 1 cm - , k, B = 34 G/ cm

ing not in a torus but along the axis of a cylinder with veloc- B"o = 0.
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FIG. 2. Integrated radiation spectrum over an angular range y = 0-0.6. FIG. 4. Radiation emitted by electron moving in a torus with ro = 41 x 1 02

cm.

cyclotron frequencies. A distant observer "sees" an electron
moving toward and away from him in a periodic fashion, radii. In all cases, the integration time interval is held fixed.
therefore one expects radiation in the range w. /( 1 -,6o) to All cases share the values B90 = 8.6 kG, k.B, = 247 G/
owa/( 1 +flo). The intensity, though, at the Doppler up- cm, k. = 0.293 cm-', Yo = 5.23, which are typical of the
shifted value is much larger than at the down-shifted value UC Irvine device. The values for the four Doppler up-shifted

since relativistic effects tend to cause the most radiation to be betatron frequencies, for r, = 41 cm, are
emitted in the forward direction. As a practical matter, when oil ... W4 -=2.03X x01 2, - 1.57X IO1, 4.62x 10", and
trying to observe radiation from high-frequency betatron os- 3.91 X 109 rad/s.
cillations, one may expect interference from very high har- Figure 3 shows the result for ro = 41 x 106 cm; as ex-
monics of the cyclotron frequency coo. This may be mini- pected, the spectrum is quite clean, consisting of narrow
mized by limiting observation to radiation polarized normal lines at - W.2 and W 3. (The other two peaks are extremely
to the plane of the torus. weak for the particle initial conditions we chose.)

In Figs. 3-5, we show a series of spectra for an electron When the radius is reduced to 41 x 102 cm, the spectrum
moving in the fields of a stellatron for different torus major in Fig. 4 results. The expected line broadening is beginning

300 132 I-U,,

z /Z Z

Z 2Mn -

44

. . . I
0.0 0.5 1.0 1.6 2.0 2.5x10

12
10 1 . . . I , . .. l __i

FREQUENCY (RAD/SEC) 0.0 0.5 1.0 1.5 2.0 2.51012

FREQUENCY (RAD/SEC)

FIG. 3. Radiation emitted by electron moving in a torus with ro = 41 X 10'
cm. FIG. 5. Radiation emitted by electron moving in a torus with ro = 41 cm.
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IV. DISCUSSION AND CONCLUSIONS 0

In a straight section, we have found that radiation emit-
ted by the betatron motion of electrons may provide a useful

120. energy diagnostic by measurement of the forward Doppler
shift. In a torus, however, geometrical effects greatly compli-

I cate the form of the spectrum and interpretation of the spec-
90 - tral peaks. The widths of the peaks will depend both on geo-

metric effects and on the actual energy spread in the beam.
LU Still, it may be possible to identify the various peaks in the

I possibility that radiation from betatron oscillations might
I J , provide a useful diagnostic for other quantities. Though this

30 , may be the case for various field gradients and field
3o.11 1strengths, it does not seem to be useful as a beam density

,i f H measurement, since only the betatron frequencies below the
o., ,.beam tube cutoff are at all sensitive to the value of the den-

0.0 0.2 0.4 0.6 0.8 1.0 x 1012 sity.

FREQUENCY (RAD/SEC) AACKNOWLEDGMENTS
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to become evident at this radius.
Finally, for ro = 41 cm, the spectrum is dramatically •

more complicated as illustrated in Fig. 5. The lines have 'C. W. Rober'son, A. Mondelli, and D. Chern, Phys. Rev. Lett. 50, 507
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Beam transport systems in which the two transverse degrees of freedom of particle motion (x and y)
are coupled are often used to transport high-current, low-energy beams. Consideration of the
matching problem for such systems requires a formalism for the description of the evolution of the
beam envelope, including the effect of space charge. By defining a 4 x 4 beam covariance matrix, it is
possible to give a simple prescription for following the rms beam ellipse through an arbitrary linear
transport system, allowing the length of the axes of the ellipse and its angle of tilt to vary; the
prescription trivially reproduces the usual K-V envelope equations in the decoupled case. The
matching condition for the general coupled system is given, and the stability problem for the r iahed
solution in the presence of space charge is formulated in general and discussed in a particular
example.

1. INTRODUCTION

The familiar K-V envelope equations' are applicable to beams confined by
focusing systems that do not couple the two transverse degrees of freedom of
particle motion, x and y. The beam ellipse remains upright in these systems, and
the axes merely vary in length along the direction of beam propagation. Certain
focusing systems used for the transport of high-current, low-energy beams,
however, do couple the x and y motion. In some simple cases with azimuthal
symmetry, e.g. a solenoid, a transformation to a rotating frame decouples the two
transverse degrees of freedom, but, in the general case the problem is most
directly treated in the coupled, "laboratory-frame" variables. Systems to which
the following analysis may be applied include the modified betatron2 (for all
stable values of field index), the bumpy torus,' the reversing solenoid lens,4 and
the stellarator-focused betatron, or stellatron.5 For this last case, matched beam
solutions have been constructed,6 7 but the stability of these solutions in the
presence of space charge remains to he stt'died. The formalism outlined here
allows such an analysis to be carried th -; _ig, this is done, as an example, below.

The stability of K-V distributions in q,. I -ole and solenoid systems has been
analyzed by Hofmann. Laslett, Smith, a . Haber8 and by Struckmeier and
Reiser. 9 Hofmann. et al. carried out a thorough analysis of the electrostatic

t Work supported by ihe Office of Naval Research.
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BEAM TRANSPORT SYSTEMS 31

discussed here in Section 4.1 No assumption is made here, of course, about the
exact form of the distribution of particle initial conditions. Using Eq. (1) it
follows that the matrix I obeys the equation

'(s) = M1 + (Mx), (3)

where T denotes transpose.
The matrix M generally consists of two parts, one due to applied, extenal fields

and another due to self, space-charge fields. For magnetic focusing with
B = (B,, B, B,),

0 1 0 0]

me"S) 3,. 0 B, B,(40 0 0 (4)
*-0 8, -9,, 0

where Bob -q(aB./ab)/pc, Bi - -qB,/pc, q is the particle charge, p is its
momentum, c is the speed of light, and cgs units are used.

The space-charge contribution ot M(s) will depend on the spatial elements of
, viZ-, 1335-,oyy, and 113'131aMO'y, that is, on the size and

orientation of the beam ellipse. The space-charge forces are linear, of course,
only when the ellipse is uniformly populated, as for the K-V distribution, which
here takes the form

f(vrWv) = Wi 6[v2(s0)W(sO)v(so) - 1J, (5)

where W is a positive definite, real symmetric matrix. If we define V(s I so) as that
4 x 4 matrix solution to the single-particle equations of motion satisfying
V(so so) = 1, the identity matrix, then

W(s) = V-1T(s I so)W(so)V-'(s IsO) (6)

and'"

7(s) W-'(s) = V(s Is,,)I(s,) V T (s I sO). (7)

The space-charge part of M is evaluated in terms of a,,, a,, and a, for the
K-V distribution in the Appendix. The result may be expressed as

0 . 0 0q 0-
Ms(s) = I [ 0 0: j (8)

L q.y 0 q,, 0

where 1 = beam current in .S direction/(mc3/q), m is the particle mass, P6 and y
are the usual relativistic factors, q.,, = Sy/D, qy = Sx/D, qy = -a-,y/D, D =

* S)(S, + S,), S, = S + a.. S, = So + a, and So = (aqayy -acj)2 .
With M(s) given by the sum of Eqs. (4) and (8), Eq. (3) describes the evolution

0



32 D. CHERNIN

of the x-y coupled K-V beam envelope in the presence of space charge. In the
decoupled system, with Mext in 2 x 2 block diagonal form (!R,, = 9,= 0 = 9)

and a, = 0, some algebra shows that Eq. (3) reproduces the usual K-V envelope
equation:, for the radii r, = 2a, and r, = 2a". For ay * 0, the K-V beam radii
(r) and the angle (r) that the major beam axis makes with the x-axis are given
by 2 (9a)

sin 2r = 2o,/ ao (9b)

cos 2ao = (a,, - a,,)/ao, (9c)

where o = [(a.. - Oyy)2 + 4a2.yl t
V
2 .

In the decoupled case, the quantities 72,- - e2,,, and cr'ya. , . -
'2" -E2,,4 are conserved, in the absence of acceleration. When coupling is

present it follows from Eq. (7) or, more generally, from Eq. (3) that the
determinant of Z is conserved. In the decoupled case, II = E'Xey.E,,., which
suggests that the quantity

exy r 11 14 (10)

may be a useful definition of beam quality in the coupled case; such a quantity is
easily calculated by particle-tracking codes.

3. MATCHED SOLUTIONS AND THEIR STABILITY

We consider the simplest definition of a matched solution to Eq. (3) in a periodie
focusing system with period L; for all s

-(s + L) = X .(11)

A slightly more general definition, which specifies that the beam ellipse rotates by
some 'e 0 every period, is possible but greatly complicates the analysis in the
gen, e. This more general definition is important to consider for focusing by
a Ic anal field; in that case one can find matched solutions that rotate at the
Larm,,. irequency. We will assume here, however, that the beam ellipse returns
to its initial shape and orientation every period, as specified by Eq. (11). If Eq.
(7) is used, the matching condition for any distribution of the form f(Q), where
Q = VrWV, is

X') = VoZoV r , (12)

where Zo = X(s,,) and V = V(so + L I so). The solution of Eq. (12) for 1- gives the
matched launching condition for the beam matrix.

The eigenvalues of V all have complex modulus 1 (since, by assumption, the
single-particle motion is stable) and occur in conjugate pairs. When the
eigenvalues are all distinct the eigenvectors of V are complete, which we assume
to be the case. If we define a matrix U that has, as columns, the normalized
eigenvectors of V,,, then any 4 x 4 matrix, in particular lo, may be written

Zo = UDU r (13)
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for some matrix of coefficients D. Substituting Eq. (13) into Eq. (12) and
ordering the eigenvalues of V such that A1A2 

= A3A, = 1, one obtains the result
that only the elements D12 , D21 , D3, and D4 3 of D are non-vanishing. Requiring
that , 0 be sypimetric and real means that D is symmetric and real; that is, the
matched solution Mo depends on just two arbitrary real parameters, D12 and D 34.

In the decoupled case, of course, these parameters are related to the x and y
emittances.

For s >so the matched solution, from Eq. (7), is

2:,(s) = F(s)DFT (s), (14)

where F(s) m V(s I so)U is the matrix containing the four Floquet solutions of Eq.
(1); F satisfies

F(so + L) = F(so)A, (15)

where A is diagonal and contains the eigenvalues of Vo.
In the presence of the K-V space-charge term, Eq. (8), one cannot calculate V

from Eq. (1) before knowing the matched solution for 1, and an iterative solution
is necessary; the most direct technique is to neglect space charge at first, calculate
V0 and the matched solution for 1, then recalculate Vo, and so on. This method is

* used successfully !r: the example treated in Section 4.
Once a matched solution is obtained one may ask whether it is stable; that is, if

a beam is launched with a distribution that is close to being matched, does it
remain close to the matched solution for s > so? This is an important question for
highly artificial distributions such as the K-V distribution that are never exactly
(but that may be approximately) realized in practice.

In the absence of space charge the matched solution is clearly stable with
respect to slight variations in Xo; replacing ,o by lo + 6Z in Eq. (7) clearly does
not affect the stability of 2(s) since the single-particle solutions V(s I so) are
assumed to be stable.

In the presence of space charge one examines stability by linearizing Eq. (3).
Writing X(s) = 1,)(s) + X1 (s) and M(s) = Mo(s) + M1(s), where a subscript 1

• denotes the perturbation, one obtains the linearized equation for Z1 :

I(S) = M01,1 + (MoZ0 )T + M'1 :0 + (M'Zo)T. (16)

Only the space-charge part of M, Eq. (8), contributes to M, in Eq. (16). The
actual linearization of M'  is completely straightforward, if a bit tedious. The nine
quantities needed are

1 29Sq d. (17a)

I aq11 _____2So S d (17b)q X X .9 a " S y

* 1 aq.,, - x_ d. (17c)

. ... a ax S
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= aq,= 1 + aY, 2 .%d (17d)
q,, $, •Z

1 'q_ ff = - d,, (17e)
qyya,, 2MoS.

1 .q_ y = - _ d .y ( 17 f)
qy 3o"Y SOS.

_ aqxyf=i -d. (17 g)

1 aq-Y = -dy (17h)
q., dlo,,

qxy 3xy,_L lqy=I 0(7i)
q~y axy o~y

where

d. = -& + q. (18a)

= + q,, (18b)

d,, = - O-% + 2q",. 080o

Equation (16) represents ten coupled linear equations with periodic
coefficients; the ten quantities are the distinct elements of the 4 x 4 symmetric
matrix 11. By reassembling the ten quantities into a column vector w, Eq. (16)
may be formally written

w'(s) = N(s)w(s), (19)

where N(s) is a 10 x 10 matrix with period L. In the usual way, one now defines
another 10 x 10 matrix T(s I so), each column of which satisfies Eq. (19); T is
defined to satisfy the initial condition T(so I so) = 1, the identity matrix. The
eigenvalues of T(so + L I So) then determine the stability of the system; an
envelope mode is (stable, unstable) if the modulus of the corresponding
eigenvalue is (less than or equal to, seems greater than) 1. There are ten eigenvalues
of T(so + L I so), the product of which may be shown to be 1. If A is an eigenvalue
then so is A; 1/A is not also necessarily an eigenvalue, as it is in the decoupled
case. 9 The ten eigenvalues are accounted for as follows: In the decoupled system,
Eqs. (3) and (16) both reduce to two 2 x 2 matrix equations, one each for x and
y. Each 2 X 2 submatrix of I is symmetric so there are 2 x 3 = 6 independent
variables, giving 6 eigenvalues in the decoupled case. (Struckmeier and Reiser
restrict perturbations to those that do not change the emittances r, and e,, and so
find 6 - 2 = 4 eigenvalues.) The remaining four eigenvalues are attributable to the
x - y coupling.
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4. AN EXAMPLE: BEAM TRANSPORT IN AN I= 2 STELLARATOR
* FIELD

It has been suggested that an 1 = 2 stellarator field may have some advantages for
the transport of high-current, relativistic electron beams. Such a field consists of
a continuously twisted magnetic quadrupole superimposed on a constant longitudi-
nal field. The analysis of the form of the matched K-V beam in the continuous

* quadrupole case has been treated by Gluckstern; 6 inclusion of a longitudinal field
requires only a redefinition of certain quantities in his analysis. Here we sketch
out the solution in our own notation7 and go on to study the envelope stability
problem.

The quadrupole field takes the form

B,(x, y, s) kBo(-x sin 2ks + y cos 2ks) (20)

B,(x, y, s) kBo(x cos 2ks + y sin 2ks), (21)

where k and B0 are constants. In the presence of the space-charge fields Eqs.
(A-I, -2) the paraxial equations for a particle near the axis may be written
compactly as a-b

where = x + iy, b, = -eB,/pc, , = -kBoe/pc, nt = (wbflyc)2 /2, Wbb= beam-
plasma frequency, -e and p are the electron charge and momentum, and a, b,
and r are the radii and orientation angle of the ellipse (see Appendix).

The matched beam consists of an ellipse of fixed radii that rotates with the
quadrupole field; that is, a and b are constants, and or = ks. The substitution
*= e'k' then allows the following solution to Eq. (22):

V) = A~e' -5- a+.A*e 1 + A_e "- + _A *_e-' --', (23)

where A, are arbitrary complex numbers,

=-k22b2 b+ (, - k2) + 2, (24)

K ± + b 2 K± + k 2 2( 5
= i2 - bK±+k (25)

where k k2 + kb + n,,, b2 = b, + 2k, and p2 =. + n,(a - b)l(a + b). In the
interesting special case where b 2 = 0, corresponding to the situation in which the
periud ui the quadrupole field equals the electron cyclotron wavelength, 7 one
finds a. = ±sgn (pz2).

The betatron oscillations are stable (x are real) when
2 1 2 k 2 ) + U >b2 Q b2 - _ k2 2 >0(26a)

2b -k2>O (6b)
2 2 O

tkI- 2 >O (26c)
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FIGURE 1 Stellarator stability plane. The quantities u and v are defined in the text following Eq.
(26c).

These conditions may be illustrated using the auxiliary quantities
u - I - 4k 2/lb2, - I"M121/b 2,

as shown in Fig. 1. In the absence of space charge, only Eq. (26c) represents a
nontrivial constraint.

We construct a K-V distribution that is independent of the phases of A,:

f =fob(f+ IA.12 +f_-. A1 2 - 1], (27)

where fo, f± are constants. The amplitudes may be expressed as functions of the
real and imaginary parts of V:

1 2 _W 1
IA1'=-D [K(l-a_- -(l ++ [K-(1 + _)p, + (1 - _)V 2

(28a)
A 1 , 1 S

A =-"[4( - ',,- (1 + c+) ', +-2 [.(1 + (.), + (1-

(28b)

where D= -K(1 - a)(l + U-) + K-(1 + a+)(1 - a, and D2 = K,(l + o.) X

(I - a-) - K_(l - C.)(1 + a_. One may alternately' express the amplitudes in
terms of V,, ,,. and the canonical momenta P, - W, and P, - : + 1b2,,. 0

Using Eqs. (28) in Eq. (27) and integrating over V,' and ip: one finds that the
beam radii in the real and imaginary directions are

a2 = (. + (29a)

b2 = -)2. + -)2 (29b)

/. /-

• • * u I
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Similarly, one may calculate the emittances in the real and imaginary directions
by integrating Eq. (27) over (i,, ip,) and (i, 1p:):

C + K2(I+_2 (30a)

2=b _[(-C.)2 K_(I-CF-)'

r -b2JI + f " (30b)

In the quadrupole-only case, Gluckstern has defined the emittances as areas in
the P, - ip, and P, - V', planes instead. For the present problem these are given by

2= 2(~C- .\'
a + ) (31a)

2 2 2
Cj= b \T+ , (31a)

where c. = K . ( + ) +12b,(1 - o), c_ = K_(l + o) + b 2(1 - o), d+=
K+(l - 4.) + jb 2(1 + a.), and d- = K_( - a-) + jb 2(1 + o_).

Using the definitions of I and ip and Eqs. (27) and (28), the value of the
matched X matrix may now be calculated. The nonzero elements at s =0 are

I)I = -a-'
4 1+o'

:14 - 141 a [k(I + G+) + +( - U+)] + (+--)

122 [k(1 - G+) + K,(1 + U+)12 + (+-- -)

I a (32)

23= 2= f 2k(1 - ) + K+(1 + o)] + (+--)

,b
4

[k(I + U+) + K +(- C+)12 + (+-. -

where the notation + (+ - -) means add the previous term with all + subscripts
replaced by -. The matched Z matrix is clearly divided into a sum of two
contributions, one from the fast (+) betatron oscillation mode and one from the
slow (-) mode. corresponding to the decomposition in Eq. (13). The determinant
of 1, a constant of motion, is given by

=( DD 2  2
I DI 16 2. (33)

The specification 1' E depends on the two unspecified constants f±, which may
be determined in a %ariety of ways. One reasonable choice would seem to be to
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specify a value for III and to require that E, = e, in Eq. (30). This choice,
however, gives the unsatisfactory result that the matched beam radii are
decreasing functions of beam cunent unless the operating point is in the "second
stable region" of Fig. 1, where u > 1. Curiously, instead of specifying e, = -,, the
choice ec, = eG,, from Eq. (31), avoids this problem, leading to beam radii that
are increasing functions of current; we make this choice in the numerical
example, below. The corresponding condition on f, is, using Eq. (31),

0lr-2a
2 -/+I1-az.ff_, (34)

except in the special case 7 b2 = 0, for which a*: = - sgn (,u2); in that case Eq. (34)
is replaced by the condition K_f+ = Kf_.

Figures 2a, 3a, 4a, and 5a illustrate the dependence of beam radii on beam
current, beam energy, longitudinal field strength, and quadrupole field strength,
respectively. All cases have k = -2:r/18 cm-' and fly 11" = 2.78 x 10- 3 rad-cm,
which correspond to typical values for a beam-transport experiment presently
being carried out. " Each point on the plots, except those for zero current,
requires an iterative procedure to obtain because the betatron wavenumbers K,,

depend on current density, that is on the beam radii, which makes Eqs. (29)
i:iplicit relations for the beam radii, for nonzero current. Once the beam radii are
found, the elements of the matched Z matrix at s = 0 follow from Eq. (32).

One may study the stability of the matched solution, using Eq. (16). One might
expect that since the matched solution is a constant in the frame rotating with the
stellarator field, one could carry through the stability analysis to calculate
oscillation frequencies and growth rates analytically for this example. Actually,
even in the rotating frame [the frame of the ,-variable of Eq. (23)] the two
degrees of freedom, p, and Wi, are coupled, requiring the calculation of the
eigenvectors of a full 4 X 4 matrix to find the matched solution. Note however
that in the special case where b2 = 0, described following Eq. (25), the coupling in
the rotating frame vanishes, and the formalism described here may be shown to
reproduce the K-V envelope equations, with constant focusing terms, in the
rotating frame; in this case the envelope oscillation frequencies are easily
calculated' analytically, and agree with those obtained numerically from Eq. (16).
To study the linear stability problem in the coupled case, Eq. (16) must be
integrated simultaneously with Eq. (3) for the matched solution, using Eq. (32) as
me initial condition. One then forms the matrix T(LI 0), defined following Eq.
(19) and finds its eigenvalues A, j = 1, 2 .... 10. We define the growth rate per
period as r,manIAjj. (35)

Figures 2b-Sb show plots of the growth rates for the unstable (ri > 0) envelope
modes as functions of system parameters. One sees that, depending on parameter
values, the dominant mode has a fairly large peak growth rate, which suggests the
probability of large emittance growth for a real system at this point. The
growth-rate curves of Figs. 2b-5b are typical of an instability due to a system
resonance, which is detuned when system parameters are varied slightly; in fact,
this is an example of a "confluent resonance" for the stellarator system. 9 We note
that calculation of linear growth rates for the K-V beam, although not

II

II
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quantitatively important for real beams, may suggest values of parameters
* (external field strengths, beam currents and energies, etc.) required to avoid

significant emittance growth in real beams. Numerical simulations need to be
done to test hiis conjecture for the stellarator system, though simulations in the
decoupled case show that emittance growth is observed in simulations of beams
with realistic profiles when the growth rates for corresponding K-V beams are
large.8.9
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APPENDIX

Space-Charge Contribution to Matrix M for K-V Distribution

We consider the self-fields of an elliptical beam of axes a and b; axis a is tilted
at an angle a to the x-axis. The electro- and magneto-static potentials are simply
obtained by rotation of coordinates:

4p(x, y) = - A (q.x 2 + 2q.rxy + q~yy 2) (A-i)

A(x, y) =,6-0, (A-2)

• where A. is the line-charge density and

4 (cos 2 or sin 2 0a) (A-3a)
qxx=a +- a

4 (cos2 ar sin\2 o------ "--- (A-3b)

q= -b sin ar cos oa -b). (A-3c)

The values of the spatial a's for a uniformly populated ellipse are

orx = I (a2 cos 2 r + b2 sin2 at) (A-4a)

a, = I (b' cos 2 ar + a2 sin 2 a) (A-4b)

ar, = I (a2 - b2) sin a cos a. (A-4c)

It is now simply a matter of algebra to eliminate a, b, and a from Eqs. (A-3) in

. . .. .. ... . ... . . ..0n m m mm m mm
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favor of o, a,,, and ay, using Eqs. (A-4). The intermediate results

ab = 4(a.,.a,, - o ,y)1/2 ,  (A-5)

a2 + b2 = 4(a, + a,,) (A-6)

are useful for this exercise. The results for q,, q,,, and q,,, cited in the text,
follow.
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APPENDIX C
Computer Codes

BBUSH: Tracks a beam pulse through an arbitrary series of gaps and transport sec-

tions, calculating the transverse deflection due to the beam break-up insta-
bility.

CBDRP: Solves the long wavelength dispersion relation for stellatron in the smooth ap-

proximation and plots real and imaginary parts of the mode frequencies ver-
sus any of 11 system parameters (beam energy, current, quadrupole strength,

etc.).

EMNAG: A dispersion relation solver for the Hughes-Godfrey instability.

ORBITT: Calculates single particle orbits in the field produced by four helically wound
wires, superposed on a uniform longitudinal field; used to study the effect of

nonlinearities on single particle motion.

RPLANE: Plots curves in stellatron parameter space on which certain resonances are
excited.

SBSC: Solves the full eigenvalue problem (no smooth approximation) for long wave-
length beam stability in the stellatron.

SPIRAL: A 3-D Biot-Savart field solver and single particle tracking code; used for
beam matching studies.

SSRS: Calculates synchrotron radiation spectrum, including the effect of betatron
oscillations, for a stellatron.

STELMAT: Calculates the matched launching condition for stellarator systems, including
space charge; also calculates growth rates of unstable modes of envelope
oscillation.

* STELTUNE: Calculates stellatron resonance crossings.

XYENV: A code for tracking beam envelopes in coupled systems, including space
charge effects.

0•



Beam stability in a stellatron
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Collective effects in the I = 2 stellatron [ Phys. Rev. Lett. 50, 507 (1983) ], a high-current electron
accelerator, are studied. A thin-beam model is employed, and only long-wavelength, low-
frequency modes are considered. The eigenvalue problem is formulated in general and solved
analytically in the fmooth approximation; comparison with a numerical solution of the
eigenvaLuc problem is excellent. It is found that the dispersion relation in the smooth
approximation is identical in form to that for the modified betatron, under a simple substitution.
An analytical expression for the transition energy, obtained earlier by a simple dynamical
argument, is confirmed. The stellarator field is found to reduce the growth rate of the negative
mass instability.

I. INTRODUCTION effect on beam stability, is treated simply: the beam is as.

The I = 2 stellatron, a betatron with an added 1 = 2 stel- sumed to be contained in a perfectly conducting toroidal
larator winding, was originally proposed' in order to im- chamber. Only the longitudinal, or negative mass mode is
prove the tolerance of a betatron or modified betatron 2 to a unstable in these circumstances. Several comments are made
mismatch between the average beam energy and the vertical below, however, regarding the effect of walls of arbitrary
magnetic field. Such a tolerance would be a desirable feature impedance on both longitudinal and transverse modes.
of any high-current accelerator, since injectors inevitably Under the above approximations we have the following
produce a beam with measurable energy spread as well as a findings to present: (1) the eigenvalue problem governing
variable average energy. Though the original analysis in- the longitudinal and transverse modes of a beam in a stella-
cluded space-charge effects in a simple, non-self-consistent tron; (2) a dispersion relation, obtained from an approxi-
way, the argument for improved momentum compaction mate solution to the eigenvalue problem, which is identical
can be based on single particle orbit considerations alone, in form to that obtained for the modified betatron, ? with the

Treatment of space-charge effects in the stellatron is redefinition of a certain symbol; (3) confirmation of an ana-
complicated by the lack of symmetry in the fields. Self-con- lyrical expression," obtained by a simple dynamical argu-
sistent, monoenergetic, KV-ike' equilibria can be construct- ment, for the so-called transition energy, below which the
ed," however, and these give explicit relations among the longitudinal mode is stable (in the absence of dissipative
beam radii (the beam is elliptical, in general), emittance, effects); (4) a quite favorable numerical comparison
current, energy, and externally applied fields; the shifts in between the solution to the eigenvalue problem of (1) and
the betatron frequencies due to space charge are also ob- the dispersion relation of (2) for the longitudinal mode.
tamed from these equilibrium studies. This paper is organized as follows. Section II describes

In the present paper the stability of a beam confined in a the derivation of the linearized equations of motion, assum-
stellatron is considered. This work was motivated, in part, by ing the applied fields are given near the axis of the torus.
certain experimental results on the I = 2 stellatron at the Section III outlines the derivation of the first-order charge
University of California at Irvine.' Though beam currents and current densities in terms of the single particle variables
have been increased in that experiment by the addition of the using a summation over initial conditions. In Sec. IV the
I = 2 windings, currents are still not as large as one might approximate solution to Maxwell's equations is obtained,
expect from the amount of injected charge. An instability of and the total first-order fields to be used in the equations of
some kind may be responsible for the current loss. An at- motion are derived. In Sec. V the eigenvalue problem is for-
tempt to discover possible current limiting mechanisms in mulated and is shown to reproduce the modified betatron
the stellatron initiated the work presented here. dispersion relation in the absence of the twisted quadrupole

The present stability calculation makes the following field. An approximate solution based on a two-time scale
approximations: All first-order fields are treated in the long- analysis is presented and some comments are made on the
wavelength (A >a m minor radius of toroidal chamber), form of the resulting dispersion relation. Finally, in Sec. VI,
low-frequency (aw.c/a) limit; toroidal corrections to the a numerical solution to the full eigenvalue problem is pre-

first-order fields are neglected. We note in particular that the sented and compared to results from the dispersion relation
long-wavelength approximation may omit the potentially in- of Sec. V.
teresting caseA-21rro/m, where r, is the major radius of the Section VII summarizes these results and makes a few

torus and m is the number of stellarator field periods around additional remarks.
the device. The beam is treated as a structureless, thin, I, EQUATIONS O MOTION
threadlike charge distribution so that the effects of betatron
oscillations and energy spread on the equilibrium are ig- We shall use a standard (r, e, z) cylindrical coordinate
nored, the magnitude of these effects can be roughly estimat- system. In the unperturbed state we have a thin beam en-
ed. however.' The beam environment, which has a critical closed in a perfectly conducting torus of major radius r0 and
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